• Title/Summary/Keyword: Car Body

Search Result 707, Processing Time 0.028 seconds

The Effect of Nano Functionalized Block Copolymer Addition on the Joint Strength of Structural Epoxy Adhesive for Car Body Assembly (차체 구조용 에폭시 접착제의 접합강도에 미치는 나노 기능성 블록공중합체 첨가의 영향)

  • Lee, Hye-rim;Lee, So-jeong;Lim, Chang-young;Seo, Jong-dock;Kim, Mok-soon;Kim, Jun-ki
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.44-49
    • /
    • 2015
  • The structural epoxy adhesive used in car body assembly needs the highest level of joint mechanical strength under lap shear, T-peel and impact peel conditions. In this study, the effect of nano functionalized block copolymer addition on the impact peel strength of epoxy adhesive was investigated. DSC analysis showed that the addition of nano functionalized block copolymer did not affect the curing reaction of epoxy adhesive. From single lap shear test, it was found out that the addition of nano functionalized block copolymer slightly decreased the cohesive strength of cured adhesive layer. The addition of nano functionalized block copolymer showed beneficial effect on T-peel strength by changing the adhesive failure mode to the mixed mode. However, the addition of nano functionalized block copolymer just decreased the room temperature impact peel strength. It was considered that the addition of nano functionalized block copolymer could have effect on disturbing the crack propagation only for the case of slow strain rate.

Evaluation to Collision Safety Performance of Stacking Angle Different CFRP/Al Circular Member (적층각이 다른 CFRP/Al 혼성 원형부재의 충돌안전성능 평가)

  • Yang, Yong Jun;Kim, Young Nam;Cha, Cheon Seok;Jung, Jong An;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.1-6
    • /
    • 2015
  • The actual condition is that environmental pollution due to the development of various industries has recently become a serious issue. An interest in improving the gas mileage is rising due to an increase in the number of vehicles in the era of high oil price in particular. In order to solve this problem, priority should be given to light-weight design of car body, However, at present, a design method enabling the conventional steel plate to be replaced is direly needed in order to guarantee passengers' safety according to excessive light-weight design of car body. In this study, in order to apply a design method that could realize fuel savings and environmental pollution prevention through an improvement in gas mileage together with meeting the safety requirements for vehicles, it was supposed that CFRP/Al composites member would be used as primary structural member. And to this end, it was intended to obtain optimum design data by experimentally implementing external impulsive load applied to the car body. According to results of impact test of CFRP/Al composites member, a collapsed shape of folding, crack, and bending occurred. So, it was possible to find that energy was observed. And in case of specimen having an angle of $90^{\circ}$ in the outermost layer and stack sequence of $[90^{\circ}{_2}/0^{\circ}2]s$, its collapsed length was shown to be short. Therefore, it was possible to find that the absorbed energy was shown to be higher by 20% or above at the maximum.

Effect of Weldbond Process on the Weldability of 1.2GPa Grade Galvannealed TRIP Steel for Car Body Manufacturing (차체용 1.2GPa급 합금화아연도금 TRIP강의 용접성에 미치는 Weldbond 공정의 효과)

  • Lee, Jong-Dae;Lee, Hye-Rim;Kim, Mok-Soon;Seo, Jong-Deok;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.28-34
    • /
    • 2016
  • Galvannealed(GA) steels are now generally used in car body manufacturing for corrosion resistance. In this study, the weldability and joint mechanical behavior of a newly developed 1.2GPa grade GA ultra high strength TRIP(transformation induced plasticity) steel was investigated for three joining processes, such as adhesive bonding, resistance spot welding and weldbonding. Under both shear and peel stress conditions, the failure mode of the adhesive joints were the mixture of the adhesive cohesive failure, adhesive interface failure and coating layer failure. It means that the adhesion strength of GA coating onto the base metal was similar to that of adhesive bonding onto the GA coating. Under the shear stress condition, the weldbonding exerted to expand the optimal spot welding condition of 1.2GPa GA TRIP steel because the strength of adhesive bond overwhelmed that of the resistance spot weld. Under the peel stress condition, the weldbonding also exerted to expand the optimal spot welding condition of 1.2GPa GA TRIP steel by inducing the tear fracture mode rather than the partial plug fracture mode.

A study on weight reduction of bracket using CAE program (CAE 프로그램을 이용한 브래킷 경량화에 관한 연구)

  • Kang, Hyung-Suk;Han, Bong-Suk;Han, Yu-Jin;Choi, Doo-Sun;Kim, Tae-Min;Shin, Bong-Cheol;Song, Ki-Hyeok
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.25-30
    • /
    • 2018
  • Recently The automotive industry is trying to increase the energy efficiency by reducing the weight of the car body and engine components as a way to achieve high energy efficiency. In particular, the reduction of the weight of the vehicle through the weight reduction of the vehicle body has the advantage that the fuel consumption and the output can be improved. But at the same time, there is the disadvantage that the strength becomes weak due to the reduction of the material thickness. Therefore, in order to overcome these disadvantages, materials with high strength according to the unit thickness have been actively developed, and researches for applying them have also been increasing. In this study, we will investigate the application of cold rolled steel sheet, which is a lightweight material, to a horn bracket that secures a installed in an automobile engine room. The horn bracket secures the horn on the car engine and is bolted to the outer wall of the engine. The momentum is acted on the bracket due to the distance between the bolt fastening part and the car horn installed on the bracket end side. Therefore, the body part of the bracket is more likely to be destroyed by the influence of the continuous stress. In this paper, design optimization for weight reduction and strength enhancement was performed to solve this problem, and possibility of applying the rolled steel sheet material as lightweight material by tensile test and fabrication was confirmed.

Maximum Height and Velocity of Jumping Car in The Air (공중으로 점프한 차량의 최대 높이 및 속도)

  • Shin, Seong-Yoon;Lee, Hyun-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.10
    • /
    • pp.55-60
    • /
    • 2012
  • An free-fall object is received only force of gravity. Movement that only accept gravity is free-fall movement, and a free-falling object is free falling body. In other words, free falling body is only freely falling objects under the influence of gravity, regardless of the initial state of objects movement. In this paper, we assume, ignoring the resistance of the air, and the free-fall acceleration by the height does not change within the range of the short distance in the vertical direction. Under these assumptions, we can know about time and maximum height to reach the peak point from jumping vertically upward direction, time and speed of the car return to the starting position, and time and speed when the car fall to the ground. It can be measured by jumping degree and risk of accident from car or motorcycle in telematics.