• Title/Summary/Keyword: Capture range

Search Result 277, Processing Time 0.029 seconds

Improving the Capture-range Problem in Phase-diversity Phase Retrieval for Laser-wavefront Measurement Using Geometrical-optics Initial Estimates

  • Li, Li Jie;Jing, Wen Bo;Shen, Wen;Weng, Yue;Huang, Bing Kun;Feng, Xuan
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.473-478
    • /
    • 2022
  • To overcome the capture-range problem in phase-diversity phase retrieval (PDPR), a geometrical-optics initial-estimate method is proposed to avoid a local minimum and to improve the accuracy of laser-wavefront measurement. We calculate the low-order aberrations through the geometrical-optics model, which is based on the two spot images in the propagation path of the laser, and provide it as a starting guess for the PDPR algorithm. Simulations show that this improves the accuracy of wavefront recovery by 62.17% compared to other initial values, and the iteration time with our method is reduced by 28.96%. That is, this approach can solve the capture-range problem.

Enhanced Gradient Vector Flow in the Snake Model: Extension of Capture Range and Fast Progress into Concavity (Snake 모델에서의 개선된 Gradient Vector Flow: 캡쳐 영역의 확장과 요면으로의 빠른 진행)

  • Cho Ik-Hwan;Song In-Chan;Oh Jung-Su;Om Kyong-Sik;Kim Jong-Hyo;Jeong Dong-Seok
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.1
    • /
    • pp.95-104
    • /
    • 2006
  • The Gradient Vector Flow (GVF) snake or active contour model offers the best performance for image segmentation. However, there are problems in classical snake models such as the limited capture range and the slow progress into concavity. This paper presents a new method for enhancing the performance of the GVF snake model by extending the external force fields from the neighboring fields and using a modified smoothing method to regularize them. The results on a simulated U-shaped image showed that the proposed method has larger capture range and makes it possible for the contour to progress into concavity more quickly compared with the conventional GVF snake model.

A Study on the Phase Locked Loop Macromodel for PSPICE (PSPICE에 사용되는 위상동기루프 매크로모델에 관한 연구)

  • 김경월;김학선;홍신남;이형재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.9
    • /
    • pp.1692-1701
    • /
    • 1994
  • Macromodeling technology is useful to simulate and analyze the performance of new elements and complicated circuits or systems without any changes in today's general simulator, PSPICE. In this paper, Phase Locked Loop(PLL) is designed using macromodeling technique. The PLL macromodel has two basic sub-macromodels of the phase detector and the voltage controlled oscillator(VCO). The PLL macromodel has two open terminals for inserting RC low pass filter. The PLL macromodel is simulated using simulation parameters of LM565CN manufactured in the National company. At a free-running frequency, 2500Hz, upper lock range and lower capture range was 437Hz, 563Hz, respectively. Also, experimental results and simulation results of LM565CN PLL show good agreement.

  • PDF

The Design and experiment of 5G-based metaverse motion synchronization system (5G 기반의 메타버스 모션 동기화 시스템의 설계 및 실험)

  • Lee Sangyoon;Lee Daesik;You, Youngmo;You, Hyeonsoo;Lee, Sangku
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.61-75
    • /
    • 2023
  • In this paper, we design and experiment a 5G-based metaverse motion synchronization system with configuration of a mobile motion capture studio that has not been commercialized at home and abroad. As a result of the experiment, the average value of the latency test measurement using Wi-Fi is 0.134 seconds faster than the average latency test measurement value using the 5G network. Existing motion capture studios have spatial limitations as the motion capture range is limited to the Wi-Fi communication range. However, the 5G-based metaverse motion synchronization system configures a mobile motion capture studio so that motion performers can solve the spatial limitations by expanding the motion capture communication range indefinitely regardless of time and place. Therefore, it is possible to implement realistic metaverse contents by displaying a realistic and natural digital human because it is free from spatial constraints. The system which was tested in this paper can create a new business model by converging next-generation technologies that are receiving attention related to the digital virtual world, such as motion capture + 5G + digital human twin + metaverse. And it allows for research and develop a next-generation metaverse-based broadcasting solution at a recent time when the business value of digital human and metaverse technologies and functions has been proven and related sales are growing in earnest.

A Numerical Study on the Performance Improvement of Kitchen Range Hood by Air Induction and Air Curtain (유도공기 및 에어커튼을 이용한 주방 레인지후드 성능 개선에 관한 수치모사)

  • Sohn, Deok-Young;Lim, Ji-Hong;Choi, Yun-Ho;Park, Jae-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.4
    • /
    • pp.321-327
    • /
    • 2007
  • In an apartment house that is generally air-tight and well insulated, the combustion gas from cooking devices is the major source of air pollution in the kitchen. It spreads throughout the house affecting the overall Indoor all quality. In this study, the performance of the kitchen range hood which employs air induction and air curtain was investigated by numerical simulation. The results are compared with that of two other kitchen range hoods which are in general use. The two general types of range hoods considered in the present calculations are box and plate type range hoods. The former has a large capture space between the filter and suction duct, while the latter has little. It was found that the capture efficiency of the kitchen range hood with air induction and air curtain Is higher than that of the general types of range hoods by 20% approximately The reason may be because the air induction and the air curtain block the air stream escaping from the front and the side part of range hoods effectively and because an additional fan for air induction and air curtain increases suction flow rates.

A Review of Motion Capture Systems: Focusing on Clinical Applications and Kinematic Variables (모션 캡처 시스템에 대한 고찰: 임상적 활용 및 운동형상학적 변인 측정 중심으로)

  • Lim, Wootaek
    • Physical Therapy Korea
    • /
    • v.29 no.2
    • /
    • pp.87-93
    • /
    • 2022
  • To solve the pathological problems of the musculoskeletal system based on evidence, a sophisticated analysis of human motion is required. Traditional optical motion capture systems with high validity and reliability have been utilized in clinical practice for a long time. However, expensive equipment and professional technicians are required to construct optical motion capture systems, hence they are used at a limited capacity in clinical settings despite their advantages. The development of information technology has overcome the existing limit and paved the way for constructing a motion capture system that can be operated at a low cost. Recently, with the development of computer vision-based technology and optical markerless tracking technology, webcam-based 3D human motion analysis has become possible, in which the intuitive interface increases the user-friendliness to non-specialists. In addition, unlike conventional optical motion capture, with this approach, it is possible to analyze motions of multiple people at simultaneously. In a non-optical motion capture system, an inertial measurement unit is typically used, which is not significantly different from a conventional optical motion capture system in terms of its validity and reliability. With the development of markerless technology and advent of non-optical motion capture systems, it is a great advantage that human motion analysis is no longer limited to laboratories.

A Pseudo Multiple Capture CMOS Image Sensor with RWB Color Filter Array

  • Park, Ju-Seop;Choe, Kun-Il;Cheon, Ji-Min;Han, Gun-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.270-274
    • /
    • 2006
  • A color filter array (CFA) helps a single electrical image sensor to recognize color images. The Red-Green-Blue (RGB) Bayer CFA is commonly used, but the amount of the light which arrives at the photodiode is attenuated with this CFA. Red-White-Blue (RWB) CFA increases the amount of the light which arrives at photodiode by using White (W) pixels instead of Green (G) pixels. However, white pixels are saturated earlier than red and blue pixels. The pseudo multiple capture scheme and the corresponding RWB CFA were proposed to overcome the early saturation problem of W pixels. The prototype CMOS image sensor (CIS) was fabricated with $0.35-{\mu}m$ CMOS process. The proposed CIS solves the early saturation problem of W pixels and increases the dynamic range.

Sensitivity Improvement Method for Color Capture Device At Low Illumination Conditions (Color Capture Device의 저조도 감도 향상 방안)

  • Kim, Il-Do;Jun, Jae-Sung;Choi, Byung-Sun;Park, Sahng-Gyu
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.235-236
    • /
    • 2007
  • CCD(Charge-Coupled Device) 혹은 CMOS (Complementary Metal Oxide Semiconductor)와 같은 소자를 이용하여 빛을 전기적 신호인 Image로 재구성하는 촬상소자(Color Capture Device)는 촬영환경이 어두워지면 Dynamic Range가 작아지고, Noise가 상대적으로 심해진다[1][2]. 본 논문에서는 촬영 환경이 어두울 때, Resolution을 Preserving하는 Pixel Pitch가 큰 촬상 소자와 Motion Blur를 억제하는 Exposure Time이 긴 촬상 소자의 조합을 신호처리로 구현하여, 신호의 Power를 향상시켜 Dynamic Range를 키우고 Noise의 Boost-up을 억제하여 SNR(Signal to Noise Ratio)을 향상시키는 방식으로, 촬상 장치의 감도를 향상시켜 화질을 개선하는 방법을 제안한다.

  • PDF

Analysis of Delta-V Losses During Lunar Capture Sequence Using Finite Thrust

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.203-216
    • /
    • 2011
  • To prepare for a future Korean lunar orbiter mission, semi-optimal lunar capture orbits using finite thrust are designed and analyzed. Finite burn delta-V losses during lunar capture sequence are also analyzed by comparing those with values derived with impulsive thrusts in previous research. To design a hypothetical lunar capture sequence, two different intermediate capture orbits having orbital periods of about 12 hours and 3.5 hours are assumed, and final mission operation orbit around the Moon is assumed to be 100 km altitude with 90 degree of inclination. For the performance of the on-board thruster, three different performances (150 N with $I_{sp}$ of 200 seconds, 300 N with $I_{sp}$ of 250 seconds, 450 N with $I_{sp}$ of 300 seconds) are assumed, to provide a broad range of estimates of delta-V losses. As expected, it is found that the finite burn-arc sweeps almost symmetric orbital portions with respect to the perilune vector to minimize the delta-Vs required to achieve the final orbit. In addition, a difference of up to about 2% delta-V can occur during the lunar capture sequences with the use of assumed engine configurations, compared to scenarios with impulsive thrust. However, these delta-V losses will differ for every assumed lunar explorer's on-board thrust capability. Therefore, at the early stage of mission planning, careful consideration must be made while estimating mission budgets, particularly if the preliminary mission studies were assumed using impulsive thrust. The results provided in this paper are expected to lead to further progress in the design field of Korea's lunar orbiter mission, particularly the lunar capture sequences using finite thrust.

Analysis on Tracking Schedule and Measurements Characteristics for the Spacecraft on the Phase of Lunar Transfer and Capture

  • Song, Young-Joo;Choi, Su-Jin;Ahn, Sang-Il;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.51-61
    • /
    • 2014
  • In this work, the preliminary analysis on both the tracking schedule and measurements characteristics for the spacecraft on the phase of lunar transfer and capture is performed. To analyze both the tracking schedule and measurements characteristics, lunar transfer and capture phases' optimized trajectories are directly adapted from former research, and eleven ground tracking facilities (three Deep Space Network sties, seven Near Earth Network sites, one Daejeon site) are assumed to support the mission. Under these conceptual mission scenarios, detailed tracking schedules and expected measurement characteristics during critical maneuvers (Trans Lunar Injection, Lunar Orbit Insertion and Apoapsis Adjustment Maneuver), especially for the Deajeon station, are successfully analyzed. The orders of predicted measurements' variances during lunar capture phase according to critical maneuvers are found to be within the order of mm/s for the range and micro-deg/s for the angular measurements rates which are in good agreement with the recommended values of typical measurement modeling accuracies for Deep Space Networks. Although preliminary navigation accuracy guidelines are provided through this work, it is expected to give more practical insights into preparing the Korea's future lunar mission, especially for developing flight dynamics subsystem.