• 제목/요약/키워드: Capture efficiency

검색결과 341건 처리시간 0.027초

A Case Study on AI-Driven <DEEPMOTION> Motion Capture Technology

  • Chen Xi;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.87-92
    • /
    • 2024
  • The rapid development of artificial intelligence technology in recent years is evident, from the emergence of ChatGPT to innovations like Midjourney, Stable Diffution, and the upcoming SORA text-to-video technology by OPENai. Animation capture technology, driven by the AI technology trend, is undergoing significant advancements, accelerating the progress of the animation industry. Through an analysis of the current application of DEEPMOTION, this paper explores the development direction of AI motion capture technology, analyzes issues such as errors in multi-person object motion capture, and examines the vast prospects. With the continuous advancement of AI technology, the ability to recognize and track complex movements and expressions faster and more accurately, reduce human errors, enhance processing speed and efficiency. This advancement lowers technological barriers and accelerates the fusion of virtual and real worlds.

Immunoaffinity Characteristics of Exosomes from Breast Cancer Cells Using Surface Plasmon Resonance Spectroscopy

  • Sohn, Young-Soo;Na, Wonhwi;Jang, Dae-Ho
    • 센서학회지
    • /
    • 제28권6호
    • /
    • pp.355-359
    • /
    • 2019
  • Exosomes, known as nanoscale extracellular vesicles in the range of 30-150 nm, are known to contain clinically significant information. However, there is still insufficient information on exosomal membrane proteins for cancer diagnosis. In this work, we investigated the characteristics of the membrane proteins of exosomes shed by cultured breast cancer cell lines using a surface plasmon resonance (SPR) spectroscopy and pre-activated alkanethiols modified sensor chips. The antibodies of breast cancer biomarkers such as MCU-16, EpCAM, CD24, ErbB2, and CA19-9 were immobilized on the pre-activated alkanethiols surfaces without any activation steps. The purified exosomes were loaded onto each antibody surface. The affinity rank of the antibody surfaces was decided by the relative capture efficiency factors for the exosomes. In addition, an antibody with a relative capture efficiency close to 100% was tested with exosome concentration levels of 104/µl, 105/µl, and 106/µl for quantitative analysis.

섬모상 매트에 의한 탁수이동차단에 관한 실험적 연구 (Control of Turbid Water Transport with Filamentous Mat)

  • 유지앙화;이치타오;김영철
    • 한국물환경학회지
    • /
    • 제26권1호
    • /
    • pp.44-51
    • /
    • 2010
  • A lab-scale apparatus for turbid water transport control was tested and examined. The channel had a dimension of $100cm{\times}30cm{\times}15cm$ (length${\times}$hight${\times}$width). And the turbidity water was prepared using two types of particles, bentonite and loess. The channel equipped with filamentous mat was operated under various shock load conditions. In the control channel, instantly, turbid water mixed with the clean water inside the channel and turbidity prevails the entire channel. While in the mat-equipped channel, it increases only at the bottom. Overall, the filamentous mat gave capture efficiency of 70~90% compared with the control group. The capture efficiency of turbid particles decreased with increased input turbidity flux. The result of experimental run on how turbid particles are separated in the mat channel shows that settling, filtration and attachment are the main processes. Meanwhile, turbidity was diffused from the channel bottom due to turbidity gradient before and after mat zone. The particle size before mat zone was lightly coarser than that after mat zone.

IGCC 플랜트에서 산소공급방식이 성능에 미치는 영향 (Influence of Oxygen Supply Method on the Performance of IGCC Plants)

  • 안지호;김동섭
    • 한국수소및신에너지학회논문집
    • /
    • 제23권3호
    • /
    • pp.264-273
    • /
    • 2012
  • In this paper, two types of integrated gasification combined cycle (IGCC) plants using either an air separation unit (ASU) or an ion transport membrane (ITM), which provide the oxygen required in the gasification process, were simulated and their thermodynamic performance was compared. Also, the influence of adopting a pre-combustion $CO_2$ capture in the downstream of the gasification process on the performance of the two systems was examined. The system using the ITM exhibits greater net power output than the system using the ASU. However, its net plant efficiency is slightly lower because of the additional fuel consumption required to operate the ITM at an appropriate operating temperature. This efficiency comparison is based on the assumption of a moderately high purity (95%) of the oxygen generated from the ASU. However, if the oxygen purity of the ASU is to be comparable to that of the ITM, which is over 99%, the ASU based IGCC system would exhibit a lower net efficiency than the ITM based system.

파력발전기의 동력인출장치의 회전각도가 효율에 미치는 영향 분석 (Investigation of Moving Angle of Power Take off Mechanism on the Efficiency of Wave Energy Converter)

  • 도황팅;누엔밍치;판콩빙;이세영;박형규;안경관
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권3호
    • /
    • pp.25-35
    • /
    • 2015
  • The hydraulic power-take-off mechanism (HPTO) is one of the most popular methods in wave energy converters (WECs). However, the conventional HPTO with only one direction motion has a number of drawbacks that limit its power capture capability. This paper proposes an adjustable moving angle wave energy converter (AMAWEC) and investigates the effect of the moving angle on the performance of the wave energy converter to find the optimal moving angle in order to increase the power capture capability as well as energy efficiency. A mathematical model of components from a floating buoy to a hydraulic motor was modeled. A small scale WEC test rig was fabricated to verify the power capture capability and efficiency of the proposed system through experiments.

KEPCO-China Huaneng Post-combustion CO2 Capture Pilot Test and Cost Evaluation

  • Lee, Ji Hyun;Kwak, NoSang;Niu, Hongwei;Wang, Jinyi;Wang, Shiqing;Shang, Hang;Gao, Shiwang
    • Korean Chemical Engineering Research
    • /
    • 제58권1호
    • /
    • pp.150-162
    • /
    • 2020
  • The proprietary post-combustion CO2 solvent (KoSol) developed by the Korea Electric Power Research Institute (KEPRI) was applied at the Shanghai Shidongkou CO2 Capture Pilot Plant (China Huaneng CERI, capacity: 120,000 ton CO2/yr) of the China Huaneng Group (CHNG) for performance evaluation. The key results of the pilot test and data on the South Korean/Chinese electric power market were used to calculate the predicted cost of CO2 avoided upon deployment of CO2 capture technology in commercial-scale coal-fired power plants. Sensitivity analysis was performed for the key factors. It is estimated that, in the case of South Korea, the calculated cost of CO2 avoided for an 960 MW ultra-supercritical (USC) coal-fired power plant is approximately 35~44 USD/tCO2 (excluding CO2 transportation and storage costs). Conversely, applying the same technology to a 1,000 MW USC coal-fired power plant in Shanghai, China, results in a slightly lower cost (32~42 USD/tCO2). This study confirms the importance of international cooperation that takes into consideration the geographical locations and the performance of CO2 capture technology for the involved countries in the process of advancing the economic efficiency of large-scale CCS technology aimed to reduce greenhouse gases

지하철 공조실 미세먼지에 대한 자성포집연구 (Study of Magnetic Filtration for Subway MVAC Dust)

  • 박해우;정상귀;조영민
    • 한국입자에어로졸학회지
    • /
    • 제11권2호
    • /
    • pp.37-46
    • /
    • 2015
  • Dust particles, which inflow to the subway mechanical ventilation and air conditioning(MVAC) chamber, contain a fair amount of iron compounds, approximately 25.2w/w%. This work attempted to capture those iron containing dust using magnetic filters. Average magnetization value of the test MVAC dust was 0.012 emu on 5,000 Oe, which could correspond sufficiently with the magnetic interaction. External permanent magnets provided with magnetization of iron mesh screen showing high gradient magnetic field(HGM). It resulted in the capture efficiency with 84.0 ~ 99.7% and 81.2 ~ 99.8% for $PM_{10}$ and $PM_{2.5}$ respectively. Magnetic capture was found to be closely associated with the magnetic intensity, mesh opening size and flow velocity.

효과적인 CO2 분리를 위한 혼합 기질 분리막 충진 소재로서의 2차원 나노물질 (Two-Dimensional Nanomaterials Used as Fillers in Mixed-Matrix Membranes for Effective CO2 Separation)

  • ;지호빈;양은태
    • 공업화학
    • /
    • 제35권3호
    • /
    • pp.155-181
    • /
    • 2024
  • 최근, 기존 분리막의 성능을 향상시켜 CO2 분리를 효율적으로 수행하기 위한 중요한 연구가 진행되고 있다. 이는 탄소포집 공정에서의 활용을 확대하는 것을 목표로 하고 있다. 분리막 기술은 비용 및 에너지 효율성, 연속 운전, 작은 공정 크기 등의 장점으로 인해 탄소제로 이슈에 대처하는 유망한 탄소 포집 기술로 부상하고 있다. 연구된 여러 종류의 분리막 중 혼합기질막(mixed-matrix membrane, MMM)이 전반적인 가스 분리 공정의 효율을 향상시킬 수 있는 전통적인 분리막의 대안으로 제안되었다. 2D 나노소재는 쉬운 개질과 기능화, 다른 재료와의 결합 등 특징적인 성질로 인해 다양한 일반적인 2D 나노소재들이 가스 분리를 위한 효율적인 MMMs 제작에 사용되고 있다. 본 논문은 2D 나노소재를 사용한 MMMs 분야의 최근 발전을 검토하였다. 또한, CO2 분리 및 포집을 위한 2D 나노소재 기반 분리막의 현재 도전과 전망을 논의하였다.

순산소 연소 기본 사이클의 작동조건 변화에 따른 성능해석 (Influence of Operating Conditions on the Performance of a Oxy-fuel Combustion Reference Cycle)

  • 박병철;손정락;김동섭;안국영;강신형
    • 한국유체기계학회 논문집
    • /
    • 제12권4호
    • /
    • pp.30-36
    • /
    • 2009
  • Recently, there has been growing interest in the oxyfuel combustion cycle since it enables high-purity $CO_2 capture with high$ efficiency. However, the oxyfuel combustion cycle has some important issues regarding to its performance such as the requirement of water recirculation to decrease a turbine inlet temperature and proper combustion to enhance cycle efficiency. Also, Some of water vapour remain not condensed at condenser outlet because cycle working fluid contains non-condensable gas, i.e., $CO_2$. The purpose of the present study is to analyze performance characteristics of the oxyfuel combustion cycle with different turbine inlet temperatures, combustion pressures and condenser pressure. It is expected that increasing the turbine inlet temperature improves cycle efficiency, on the other hand, the combustion pressure has specific value to display highest cycle efficiency. And increasing condensing pressure improves water vapour condensing rate.

연속공정에서 고체흡수제의 입자분석을 통한 재생반응기 주입 수분량에 따른 CO2 회수효율 영향 분석 (Analysis of CO2 Capture Efficiency in Relation to the Inlet Moisture Content of the Regenerator in the Continuous Process by using Sorbent Analysis)

  • 이도영;김기찬;박영철;한문희;이창근
    • Korean Chemical Engineering Research
    • /
    • 제50권4호
    • /
    • pp.654-658
    • /
    • 2012
  • 본 연구에서는 두 개의 기포유동층반응기로 구성된 연속공정에서 고체 흡수제의 입자분석을 이용하여 재생반응기 유동화 기체로 사용된 수분 주입량에 따른 H2O 전처리 효과에 대해 규명하였다. 또한 재생반응기의 고체 배출 구조를 underflow 형태에서 overflow 형태로 수정하여 $CO_2$ 회수효율을 비교 분석하였다. 재생반응기의 유동화 기체로 사용된 수분의 주입량에 따른 고체흡수제의 전처리 효과를 알아보기 위하여 각각의 조업변수에서 포집된 고체입자를 XRD(X-ray Diffraction), SEM (Scanning Electron Microscope), TGA 분석을 수행하였다. XRD 분석을 이용한 결과 재생반응기의 유동화 기체로 주입된 수분에 의해 $K_2CO_3{\cdot}1.5H_2O$의 입자구조가 형성됨을 확인하였으며 TGA 분석에서는 재생반응기로 주입된 수분량에 따라$K_2CO_3{\cdot}1.5H_2O$의 입자구조가 증가하는 경향성을 나타냈다. 재생반응기 내부에서 형성된 $K_2CO_3{\cdot}1.5H_2O$의 입자구조는 흡수반응 시 $CO_2$와의 반응성을 증가시켜 $CO_2$ 회수효율이 향상되는 전처리 효과를 나타내었다. 또한 재생반응기 고체 배출 구조를 underflow 형태에서 overflow 형태로 수정하여 $CO_2$ 회수효율을 비교 분석한 결과 약 3~8% 증가함을 확인하였다.