• Title/Summary/Keyword: Capsizing

Search Result 64, Processing Time 0.026 seconds

A Study on the Cause Analysis for the Capsizing Accident in Fishing Vessels (어선의 전복사고 원인별 분석에 관한 연구)

  • Jung, Chang-Hyun;Park, Young-Soo;Kim, Jong-Sung;Kim, Se-Won
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • In recent 5 years, the 70 percent of the ship's accident was occurred in the fishing vessels, and most of them were the engine troubles and collisions. The capsizing accident was comparatively low portion of occupation, which took only 2 percent, but the scale of accident and the loss of lives and property are known very tremendous. In this paper, it was examined for the stability provisions of fishing vessels in domestic and international to reduce the capsizing of them. Also, it was made an analysis for the case of capsizing accidents to suggest the measures against the capsizing.

Prediction of Extreme Ship Motions in Following and Quartering Seas (선미파, 선미사파를 받는 선박의 과도 운동 추정에 대한 연구)

  • Kwon, Chang-Seop;Yeo, Dong-Jin;Rhee, Key-Pyo;Yoon, Sang-Woong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.1-7
    • /
    • 2007
  • Recently, researches to find rational mathematical model for prediction of capsizing have been progressed by ITTC. Lee(1997) developed a mathematical model which describes 6 DOF transient motions, such as capsizing, of a ship in regular waves. In this study a mathematical model for prediction of capsizing in following and quartering seas is developed based on Lee's model. And factors affecting prediction of capsizing are analyzed through comparing simulation results with experimental results. Present simulation results are compared with ITTC bench mark test results. In rolling tests with beam seas and tree runs with stern quartering seas, capsizing events are predicted well. But calculated roll angle is larger than experimental one. It is found that nonlinear manoeuvring coefficients don't affect the prediction of capsizing events.

Rolling Motion Simulation in the Time Domain and Ship Motion Experiment for Algorithm Verification for Fishing Vessel Capsizing Alarm Systems (어선전복경보시스템 알고리즘 검증을 위한 어선 횡동요 시험 및 시간영역 횡동요 시뮬레이션)

  • Yang, Young-Jun;Kwon, Soo-Yeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.956-964
    • /
    • 2017
  • This study contributes to deepening understand of the characteristics of fishing vessel rolling motions to improve the development of capsizing alarm systems. A time domain rolling motion simulation was performed. In order to verify capsizing alarm systems, it is necessary to carry out experiments assuming a capsizing situation and perform actual fishing vessel measurements, but these tasks are impossible due to the danger of such a situation. However, in many capsizing accidents, a close connection with rolling motion was found. Accordingly, the rolling motion of a fishing boat, which is the core of a fishing vessel capsizing alarm system, has been accurately measured and a time domain based on a rolling motion simulation has been performed. This information was used to verify the algorithm for a capsizing alarm system. Firstly, the characteristics of rolling motion were measured through a motion experiment. For small vessels such as fishing vessels, it was difficult to interpret viscosity due to analytical methods including CFD and potential codes. Therefore, an experiment was carried out focusing on rolling motion and a rolling mode RAO was derived.

An Investigation into Capsizing Accident and Potential Technology for Vessel Stability Assessment

  • Long, Zhan-Jun;Jeong, Jae-Hun;Jung, Jin-Woo;Lee, Seung-Keon
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.55-61
    • /
    • 2013
  • In this paper, ship accidents are analyzed briefly and the main objective is to investigate a potential technological approach for risk assessment of vessel stability. Ship nonlinear motion equation and main parameters that induce ship capsizing in beam seas have analyzed, the survival probability of a ferry in random status have estimated and finally find out a risk assessment concept for ship's intact stability estimation by safe basin simulation method. Since a few main parameters are considered in the paper, it is expected to be more accurately for estimating ship survival probability when considering ship rolling initial condition and all other impact parameters in the future research.

Analysis of Capsizing Phenomena of a Shop in Waves (파도중 선박의 전복 현상 해석)

  • 안창구;고창두
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.1 no.1
    • /
    • pp.27-38
    • /
    • 1995
  • In this paper, a program for the calculation of GZ curve for a ship in waves is developed and GZ curves for a ferry in the still water and in waves are calculated. And the added mass, damping, restoring forces and wave exciting forces are calculated by using the strip theory given by Salvesen, Tuck, Faltinsen. Capsizing simulations are perfoned in consideration if the nonlinear restoring forces of the ship in waves by using the Runge-Kutta 4-th method.

  • PDF

An analytic study on the hull characteristics of ship accidents at low capsizing speeds (저속으로 전복되는 선박사고의 선체 특성에 대한 해석적 연구)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.235-239
    • /
    • 2016
  • The capsizing speed of an unstable vessel with a lost restoring moment can be understood as a unique response to an accident situation, and is naturally affected by such parameters as moment of inertia, metacentric height, and transverse damping coefficient of the hull in the case of free roll motion. Additionally, it is supposed that the analysis of capsize accidents can be further simplified when a vessel's leaning velocity is shown to be quite low. Therefore, capsize accidents with low leaning speeds are desirably categorized in view of rescuing strategies, as opposed to fast capsize accidents, since the attitude of the declining hull can be properly estimated, which allows rescuers to have more time for helping accident cases. This study focuses on deriving some analytical equations based on the roll decay ratio parameter, which describes how a hull under a low-speed capsize is related to the situational hull characteristics. The suggested equations are applied to a particular ship to disclose the analytical responses from the model ship. It was confirmed that the results show the general characteristics of slow capsizing ships.

Causal Analysis of a Tugboat Capsizing Accident in Rough Weather Condition Based on a Dynamical Simulation

  • Yoon, Hyeon-Kyu;Kim, Sun-Young;Lee, Gyeong-Joong
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.211-221
    • /
    • 2011
  • Tugboats are widely used near harbors to assist with various operations such as the berthing and deberthing of very large vessels and the towing of barges. Capsizing accidents involving tugboats occasionally take place when the tugboat makes rapid turns in harsh weather conditions. When there is little evidence suggesting how the accident occurred and when the crew members are missing, it is necessary to predict the time history of the towing vessel’s attitude and trajectory from its departure point to when and where it capsized, depending on various input parameters using a numerical simulation. In this paper, the dynamics of a tugboat and a towed barge in conjunction with the external force and moment were established, and the possible input parameters and operational scenarios which might influence the large roll motion of the tugboat were identified. As a result of analyzing the simulated time history of the excessive roll motion of the tugboat, it was found that roll motion can take place when the tugboat is situated on the crest of a wave and when it is pulled by a towed barge through a towing line. The main cause of the accident would be the parameters that primarily influence such situations. These are the wave parameters, course changing scenario, and the amount of tension.

Analysis on the Dynamic Responses of Fishing Vessels in a Seaway (파랑중 어선의 동력학 해석)

  • 이희상
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.1
    • /
    • pp.33-44
    • /
    • 2000
  • Ships in a seaway will encounter dangerous situation, such as slamming, stranding, and capsizing. The number of capsizing is small, but the loss due to them is very large from the viewpoint of human life, property, and the environmental pollution. The number of capsizing of fishing vessels is about 62% of total number of capsizing, and the half of them is originated from the operational mistake in a seaway. So the dynamics and the capsizing phenomena are to be studied, and the guide for the safe operation of a fishing vessel in a seaway are to be specified. The hydrodynamic forces consist of radiation forces (which are due to the motion of a ship), Froude-Krylov forces (which is due to the incoming waves), and diffraction forces (which is due to the wave and ship interaction). These forces are calculated by well-known strip method. Using the calculated forces, the motion of a ship in a regular sea is obtained. In the real seaway, the waves are very irregular, therefore the statistical analysis is very helpful. In this paper, using the results of the motion in a regular seaway and the wave spectrum, the motion in a irregular seaway are obtained and analyzed.

  • PDF

A Study on the Adoption of Korean Register of Shipping Rules through the Analysis of Pile Driving Boat Capsizing (침몰된 항타선 분석을 통한 한국선급 규칙 적용에 관한 연구)

  • Chung, Won-Jun;Kim, Jeong-Dae;Park, Sung-Boo;Jung, Kwang-Hyo;Lee, Jae-Myung
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • In December 2012, a pile driving boat sunk off the coast of Ulsan port in Korea. The cause of capsizing of these boats was considered a complex problem. Although Korean Ship Safety Technology Authority concluded that leaders (cranes) of the vessel were designed with sufficient safety factors, National Forensic Service concluded that the capsizing was caused by the failure of leaders. This study reviewed the related laws, strength calculations, and structural analysis methods used by the Korea Ship Safety Technology Authority. In addition, numerical simulations were carried out on hydrodynamic analysis and structural analysis to analyze the cause of vessel capsizing based on the rules of the Korean Register of Shipping. The results were similar to those found by National Forensic Service. In conclusion, the study suggested that inspection especially for a pile driving boat subjected to the Korean Register of Shipping rules should be carried out to prevent the similar accident.

Probability Prediction of Stability of Ship by Risk Based Approach (위험도 기반 접근법에 의한 선박 복원성의 확률 예측)

  • Long, Zhan-Jun;Jeong, Jae-Hun;Moon, Byung-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.2
    • /
    • pp.42-47
    • /
    • 2013
  • Ship stability prediction is very complex in reality. In this paper, risk based approach is applied to predict the probability of a certified ship, which is effected by the forces of sea especially the wave loading. Safety assessment and risk analysis process are also applied for the probabilistic prediction of ship stability. The survival probability of ships encountering with different waves at sea is calculated by the existed statistics data and risk based models. Finally, ship capsizing probability is calculated according to single degree of freedom(SDF) rolling differential equation and basin erosion theory of nonlinear dynamics. Calculation results show that the survival probabilities of ship excited by the forces of the seas, especially in the beam seas status, can be predicted by the risk based method.