• Title/Summary/Keyword: Capsid protein

Search Result 119, Processing Time 0.023 seconds

Comparison of immunogenecities of three beta-nodavirus proteins, capsid protein, non-structural protein B1 and B2 in olive flounder

  • Cha, Seung-Ju;Do, Jeong-Wan;Ko, Myoung-Seok;Kim, Jin-Woo;Park, Jeong-Woo
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.219-228
    • /
    • 2009
  • The genomic and subgenomic RNAs of fish nodavirus encode the four proteins, protein A, capsid protein, non-structural protein B1 and B2. In this study, we describe the immune response of olive flounder Paralichthys olivaceus immunized with live fish nodavirus or recombinant capsid protein, non-structural protein B1 and B2 expressed in E. coli. Nodavirus-infected flounder produced antibodies to capsid protein, B1 and B2 and nodavirus-neutralizing activities were detected in the serum of the nodavirus-infected flounder. The flounder were immunized against the three recombinant proteins of fish nodavirus and the sera from these immunized fishes were assayed for nodavirus-specific antibody by ELISA and a neutralization test. In the immunized flounder, all three recombinant proteins induced the production of similar levels of antibody, but only the antibody to capsid protein significantly neutralized nodavirus. These results indicate that all three nodaviral proteins are immunogenic in flounder, but only the capsid protein can induce neutralizing antibody against nodavirus.

Expression of porcine circovirus type 2 capsid protein fused with partial polyhedrin using baculovirus

  • Lee, Jun Beom;Bae, Sung Min;Shin, Tae Young;Woo, Soo Dong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.30 no.2
    • /
    • pp.50-57
    • /
    • 2015
  • Porcine circovirus type 2 (PCV2) is an important infectious swine virus causing postweaning multisystemic wasting syndrome (PMWS). PCV2 capsid protein, encoded by ORF2 has type-specific epitopes, is very immunogenic, and is associated with the induction of neutralizing antibodies. For the efficient production of capsid protein, recombinant Autographa californica nucleopolyhedroviruses were generated to express ORF2 fused with two forms of a partial polyhedrin. Recombinant capsid protein was produced successfully with the partial polyhedrin fusion form and the yield was high, as was shown by SDS-PAGE. Production of recombinant capsid proteins in insect cells was confirmed by Western blot analysis using anti-His monoclonal antibody, anti-ORF2 monoclonal antibody, and anti-PCV2 porcine serum. Fusion expression with amino acids 19 to 110 of the polyhedrin increased the production of recombinant capsid protein, but fusion with amino acids 32 to 85 did not. Additionally, PCV2 capsid protein is a glycoprotein; however, the glycosylation of recombinant protein was not observed. The results of an Enzyme-linked immunosorbent assay (ELISA) showed that recombinant capsid proteins could be utilized as antigens for fast, large-scale diagnosis of PCV2-infected pigs. Our results suggest that the fusion expression of partial polyhedrin is able to increase the production of recombinant PCV2 capsid protein in insect cells.

A Cell-based Method to Monitor the Interaction between Hepatitis B Virus Capsid and Surface Proteins

  • Kim, Yun-Kyoung;Oh, Soo-Jin;Jin, Bong-Suk;Park, Chan-Hoo;Jeon, Hye Sung;Boo, Doo-Wan;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.577-581
    • /
    • 2009
  • Interactions between the surface and capsid proteins of the hepatitis B virus (HBV) are critical for the assembly of virus particles. In this study, we developed a cell-based method to visualize the interactions between the capsid and surface proteins of HBV. Capsid-GFP, a capsid protein fused to a green fluorescence protein (GFP), forms nucleocapsid-like structures in the cytoplasm of mammalian cells. It relocates to the plasma membranes in cells expressing PH-PreS, a fusion protein consisting of the PreS region of the HBV surface protein and the PH domain of PLC-$\gamma$. Membrane localization of the capsid-GFP in these cells is prevented by an inhibitory peptide that blocks the interaction between the capsid and surface proteins. This dynamic localization of capsid-GFP is applicable for screening compounds that may potentially inhibit or prevent the assembly process of HBV particles.

Genetic Mapping and Sequence Analysis of the Gene Encoding the Major Capsid Protein of Bacteriophage E3 (박테리오파지 E3의 Major Capsid Protein을 만드는 유전자의 Mapping 및 염기서열 분석)

  • Bae, Soo-Jin;Myung, Hee-Joon
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.266-269
    • /
    • 1999
  • Bacteriophage E3 grows very rapidly and forms a large size plaque with a diameter of 1 cm. The promoter controlling the expression of the gene encoding the major capsid protein is thought to be most efficient. To find out this promoter, this gene was mapped in the genome according to the following procedure. The major capsid protein was purified from phage particle and the N-terminal amino acid sequence was revealed. Based on this sequence,a degernerate oligonucleotide probe was designed and used for screening of the genomic DNA fragments. From the DNA sequence of the selected clone, the gene encoding the major capsid protein was mapped at 70% of E3 genome. The expression of this gene was not sensitive to rifampicin which indicated the presence of E3's own RNA polymerase.

  • PDF

Capsid Protein Gene Sequence Analysis and Development of Diagnostic Method by RT-PCR of Barley Yellow Mosaic Virus

  • Lee, Kui-Jae;So, In-Young
    • Plant Resources
    • /
    • v.2 no.2
    • /
    • pp.69-74
    • /
    • 1999
  • A rapid and sensitive assay for specific detection and identification of barley yellow mosaic virus(BaYMV) was set up using the reverse transcriptase polymerase chain reaction(RT-PCR). A couple of primers was select to discriminate the viruses. PCR fragments of BaYMV(ca.0.9 kb) were obtained by using the method designed for BaYMV capsid protein. RT-PCR fragments were cloned with vector pT7 Blue and the resulting clones were sequenced. Capsid protein of BaYMV consisted of 297 amino acids and 891 nucleotides. The capsid protein sequence of BaYMV showed that 98% of nucleotides and 99% of amino acids homology.

  • PDF

Efficient Production of Porcine Circovirus Type 2 Capsid Protein using Baculovirus

  • Lee, Jun-Beom;Bae, Sung-Min;Kim, Hee-Jung;Lee, Won-Woo;Heo, Won-Il;Shin, Tae-Young;Choi, Jae-Bang;Woo, Soo-Dong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.24 no.1
    • /
    • pp.23-27
    • /
    • 2012
  • Porcine circovirus type 2 (PCV2) is a single-stranded circular DNA virus associated with Postweaning multisystemic wasting syndrome (PMWS), which is considered to be an important infectious swine viral disease. PCV2 capsid protein encoded by ORF2 is a structural protein and expected as the high immunogenicity protein. In this study, we generated recombinant baculovirus containing ORF2 of PCV2 and analyzed the optimal conditions for the production of capsid protein in insect cell. Production and status of recombinant capsid protein in insect cell were confirmed by SDS-PAGE and Western blot analysis using His tag antibody and anti-PCV2 serum. The yield of recombinant capsid protein was high like as shown visible on SDS-PAGE. Optimal multiplicity of infection (MOI) and infection time of recombinant virus were determined as 5 MOI and 4 days, respectively. ORF2 is known to have N-linked glycosylation site, but we couldn't detect the glycosylation of recombinant protein in insect cells.

Development of A Monkey Kidney Cell Line Which Expresses Poliovirus Capsid Protein

  • Choi, Weon-Sang
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.4
    • /
    • pp.295-302
    • /
    • 1998
  • The RNA genome of poliovirus encodes a long polyprotein precursor and this polyprotein is cleaved proteolytically by viral protease to yield mature proteins. The mature proteins derived from the P1 polyprotein precursor are the component of capsids. To further delineate the process of capsid assembly and encapsidation, in a first attempt, a cell line which expresses the authentic P1 polyprotein was established. CV-1 cells were transfected with the pRCRSVS1P1 plasmid DNA which contains 5'ncr sequences, whole authentic capsid gene of poliovirus and neomycin resistance gene. These cells were treated with G418 for 3 months, and eventually G418 resistant cells were selected and formed colonies. Each colony was picked and grown in the media containing G418. DNA analysis indicated that 1 of 13 neomycin resistant cell lines (R2-18) contains whole poliovirus P1 capsid gene segment which was incorporated into the genome. Immuneprecipitation of cell lysates with sera from rabbit immunized with inactivateded Sabin type 1 particles demonstrated the constitutive expression of the poliovirus P1 capsid protein from R2-18.

  • PDF

Unusual Features of Human Immunodeficiency Virus Type-1 Virion (면역결핍 바이러스 입자의 비특이적 성질)

  • Shin, Cha-Gyun
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.1
    • /
    • pp.107-114
    • /
    • 1996
  • 본 연구는 인간면역결핍바이러스의 입자를 비이온성 계면활성제로 처리할 때 바이러스 입자구조에서 분리되어 방출되는 바이러스 구조단백질들의 분포를 sucrose gradient로 분석하여, 바이러스 입자를 구성하는 바이러스 구조단백질과 바이러스입자의 생물리학적 특성을 연구하였다. 바이러스입자들을 0.16% NP40 (Nonidet P-40)으로 처리할 때, 바이러스 capsid 단백질과 바이러스 막 단백질 (membrance protein)들은 다른 바이러스 구성성분들과 잘 분리되었다. 계면활성제처리에서 방출되지 않은 구성 성분들은 matrix 단백질, nucleocapsid 단백질, reverse transcriptase, integrase 및 바이러스 RNA genome로써, 이들은 subviral 구조를 형성한다. 이러한 결과는 상대적으로 다른 바이러스들의 capsid 단백질과 면역 결핍 바이러스의 capsid 단백질 (p24)를 비교할 때, 면역결핍바이러스의 capsid 단백질은 바이러스핵을 형성할 때, capsid 단백질 사이의 결합력이 매우 약한 것으로 추정된다. 또한 바이러스 조절단백질의 하나인 vpr 단백질을 함유하는 바이러스입자를 NP40 처리하여 분석하였을 때, vpr 단백질은 subviral 구조에 존재하는 것으로 나타났다.

  • PDF

Production of Red-spotted Grouper Nervous Necrosis Virus (RGNNV) Capsid Protein Using Saccharomyces cerevisiae Surface Display (Saccharomyces cerevisiae 표면 발현을 이용한 붉바리 신경괴사 바이러스 외피단백질의 생산)

  • Park, Mirye;Suh, Sung-Suk;Hwang, Jinik;Kim, Donggiun;Park, Jongbum;Chung, Young-Jae;Lee, Taek-Kyun
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.995-1000
    • /
    • 2014
  • The studies of marine viruses in terms of viral isolation and detection have been limited due to the high mutation rate and genetic diversity of marine viruses. Of the modern methods currently used to detect marine viruses, serological methods based on enzyme-linked immunosorbent assay (ELISA) are the most common. They depend largely on the quality of the antibodies and on highly purified suitable antigens. Recently, a new experimental system for using viral capsid protein as an antigen has been developed using the yeast surface display (YSD) technique. In the present study, the capsid protein gene of the red-spotted grouper nervous necrosis virus (RGNNV) was expressed and purified via YSD and HA-tagging systems, respectively. Two regions of the RGNNV capsid protein gene, RGNNV1 and RGNNV2, were individually synthesized and subcloned into a yeast expression vector, pCTCON. The expressions of each RGNNV capsid protein in the Saccharomyces cerevisiae strain EBY100 were indirectly detected by flow cytometry with fluorescently labeled antibodies, while recognizing the C-terminal c-myc tags encoded by the display vector. The expressed RGNNV capsid proteins were isolated from the yeast surface through the cleavage of the disulfide bond between the Aga1 and Aga2 proteins after ${\beta}$-mercaptoethanol treatment, and they were directly detected by Western blot using anti-HA antibody. These results indicated that YSD and HA-tagging systems could be applicable to the expressions and purification of recombinant RGNNV capsid proteins.

Flavonoids as Novel Therapeutic Agents Against Chikungunya Virus Capsid Protein: A Molecular Docking Approach

  • E. Vadivel;Gundeep Ekka;J. Fermin Angelo Selvin
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.226-235
    • /
    • 2023
  • Chikungunya fever has a high morbidity rate in humans and is caused by chikungunya virus. There are no treatments available until now for this particular viral disease. The present study was carried out by selecting 19 flavonoids, which are available naturally in fruits, vegetables, tea, red wine and medicinal plants. The molecular docking of selected 19 flavonoids was carried out against the Chikungunya virus capsid protein using the Autodock4.2 software. Binding affinity analysis based on the Intermolecular interactions such as Hydrogen bonding and hydrophobic interactions and drug-likeness properties for all the 19 flavonoids have been carried out and it is found that the top four molecules are Chrysin, Fisetin, Naringenin and Biochanin A as they fit to the chikungunya protein and have binding energy of -8.09, -8.01, -7.6, and 7.3 kcal/mol respectively. This result opens up the possibility of applying these compounds in the inhibition of chikungunya viral protein.