• Title/Summary/Keyword: Capsaicin

Search Result 389, Processing Time 0.026 seconds

Anti-nociceptive Effect of Bee Venom on Capsaicin or Bradykinin-induced Pain (Capsaicin이나 Bradykinin으로 유발된 통증에 대한 봉독의 억제 효과)

  • Yang, Chang-Yeol;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.24 no.2
    • /
    • pp.39-49
    • /
    • 2007
  • 목적 : 봉독으로 유발된 통각수용의 강도와 봉독으로 나타나는 항통각수용(통각억제성)의 강도를 쥐의 포르말린 테스트를 통해 상호관련됨을 확인하고 capsaicin과 bradykinin으로 통증 유발된 쥐의 자발적인 통증행동(핥기횟수측정; LN), 꼬리경타시험(TFL)과 열판시험(HPL)을 통해 봉독의 항통각수용(통각억제)작용을 재확인 하고자 하였다. 방법 : 쥐의 뒷다리에 통증유도 물질인 Capsaicin 또는 Bradykinin을 20${\mu}l$를 주사하여 동통을 유발하고 자발적 통증행동인 핥기횟수측정(LN), 꼬리경타기간(TFL)과 열판 위에서의 온도자극에 쥐가 반응하는 시간을 측정(HPL)하는 실험을 봉독을 주입하거나, 몰핀을 주입하거나, 아무것도 주입하지 않고 통증유발만 시킨 이후에 각각 시행하였다. 결과: 1. Capsaicin 또는 Bradykinin으로 동통유발 후 LN은 두드러증가를 보임, HPL은 감소를 TFL은 두드러진 감소를 나타내었다. 2. 봉독이나 몰핀 주입 30분 후에 Capsaicin으로 동통유발 이후 LN은 봉독과 몰핀에서 모두 현격한 감소를, HPL은 봉침은 현격한 증가를, 몰핀에서는 감소를, TFL은 봉침과 몰핀에서 모두 현격한 증가를 나타내었다. 3 봉독과 몰핀주입 30분후에 Bradykinin으로 동통유발 이후 LN은 봉독은 증가 몰핀은 현격한 감소를, HPL은 봉침은 증가 몰핀에서는 현격한 증가를, TFL은 봉침과 볼핀에서 모두 증가를 나타내었다. 결론 : 봉독은 Capsaicin 또는 Bradykinin으로 동통유발된 통각수용행동을 감소시키는 결과를 나타내었는데 이것은 기존의 연구결과들에서의 봉독의 항통각수용(통각억제성)의 효과를 입증하였고 봉약침은 염증의 개선이나 암과 관련된 동통에 유효한 방법임을 시사하는 것이다.

  • PDF

EFFECTS OF A VARIOUS DRUGS ON THE RELEASE OF NEUROTRANSMITTERS FROM TRIGEMINAL SENSORY NUCLEUS (삼차신경 감각핵의 신경전달물질 유리에 대한 수 종 약물의 효과)

  • Yoon, Jung-Hae;Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.423-431
    • /
    • 1995
  • Trigeminal spinal sensory nucleus is a main relay site in transmission of orofacial pain. Glutamate and aspartate playa role in transmission of primary afferents. This experiment was performed to study the role of capsaicin, KR-25018 and shogaol on the release of glutamate and aspartate from trigeminal spinal sensory nucleus. Release of excitatory amino acids(EAAs) was induced by electrical stimulation of oral mucosa with innocuous or noxious stimuli. Capsaicin($10{\mu}M$), KR-25018($10{\mu}M$), shogaol($10{\mu}M$), ruthenium red and capsazapine were added to perfusion solution to observe the changes in EAA release, and glutamate and aspartate were determined by HPLC. Release of glutamate and aspartate from trigeminal sensory nucleus was increased by noxious stimulation of oral mucosa, but innocuous stimulation did not affect on the release of EAA Capsaicin and KR-25018 increased the release of glutamate and aspartate, and effect of KR-25018 on release of EAA was more potent than capsaicin. But shogaol had a weak effect on release of EAA. Effect of capsaicin and KR-25018 was partially blocked by capsaicin antagonists, ruthenium red and capsazepine.

  • PDF

Suppression of Phorbol Ester-Induced NF-kB Activation by Capsaicin in Cultured Human Promyelocytic Leukemia Cells

  • Han, Seong-Su;Keum, Young-Sam;Chun, Kyung-Soo;Surh, Young-Joon
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.475-479
    • /
    • 2002
  • Capsaicin, a major pungent constituent of red pepper (Capsicum annuum L.) possesses a vast variety of pharmacologic and physiologic activities. Despite its irritant properties, the compound exerts anti-inflammatory and anti-nociceptive effects. Previous studies from this laboratory revealed that capsaicin, when topically applied onto dorsal skin of female ICR mice, strongly attenuated activation of NF-kB and AP-1 induced by the typical tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), which may account for its anti-tumor promoting activity in mouse skin. In the present work, we have found that capsaicin suppresses TPA-stimulated activation of NF-kB through inhibition of $IkB{\alpha}$ degradation and blockade of subsequent nuclear translocation of p65 in human pro myelocytic leukemia HL-60 cells. Methylation of the phenolic hydroxyl group of capsaicin abolished its inhibitory effect on NF-kB DNA binding. Likewise, TPA-induced activation of AP-1 was mitigated by capsaicin treatment.

A Possible Mechanism of Analgesic Action of DA-5018i A New Capsaicin Derivative : Capsaicin-like Effect on The Release of Substance P (새로운 캅사이신 유도체 DA-5018의 진통활성 기전연구: Substance P 관련성)

  • 손미원;손문호;배은주;김순희;김원배;양중익
    • Biomolecules & Therapeutics
    • /
    • v.5 no.1
    • /
    • pp.94-99
    • /
    • 1997
  • Capsaicin is known to be an analgesic agent, affecting the synthesis, storage, , transport and release of substance p, the principal neurotransmitter of pain from periphery to the central nervous system(CNS). DA-5018, a newly synthesized capsaicin derivative has shown potent analgesic effect comparable to that of morphine in various rat models of experimentally inducted acute pairs. In this study the mechanism of analgesic actlvity of DA-5018 was examined. First, the electrically-evoked contraction of guinea pig trachea was inhibited by DA-5018 and these inhibition was recovered by incubation with capsafepine(3$\muM$), capsaicin receptor antagonist and this result suggested that DA-5018 has affinity on capsaicin receptor. The correlation between the norciceptive threshold and the release of substance P was evaluated. In vivo perfusion of slices of the rat spinal cord with DA-5018(10, 100$\muM$) produced a significant increase of the release of substance P and this increase was less than that of capsaicin(10$\muM$). The norciceptive threshold of rat treated with DA-5018(1 mg/kg, p.o) in tall pinch test increased from 2.9$\pm$0.3 to 23.5 $\pm$6.61. Tail pinch latency increased to a maximun at 15 min after DA-5018 treatment and then declined to control values by 120 min. The capsaicin-evoked release ot substance P from the spinal cord slices of rat treated with DA-5018 reduced from 2.38$\pm$ 0.79 to 0.69$\pm$ 0.26 pg/mg wet weight. This reduction reached to a minium at 15 min after DA-5018 treatment and then recovered to control value by 120 min. These results mean that analgesic activity of DA-5018 is due to release of substance P The effect of DA-5018 cream on electrically-evoked neurogenic inflammation of rat saphenous nerve was compared with capsaicin (zostrix-HP). DA-5018 showed 34% inhibition of the neurogenic extravasation while capsaicin showed significant 67% inhibition. This result indicates that the potency of DA-5018 in the release of substance P is less than that of capsaicin. These results suggest that the release of substance P is partially involved in the mechanism of analgesic action of DA-50l8.

  • PDF

Enzymatic studies on capsaicin, the hot component of capsicum annum II A method of assaying capsaicin in kochuzang (고추의 신미성분Capsacin에 대한 효소화학적 연구 (제 2 보) 고추장중 신미성분의 정량법에 관하여)

  • 한구동;이상섭
    • YAKHAK HOEJI
    • /
    • v.4 no.1
    • /
    • pp.56-59
    • /
    • 1959
  • We composed a method of assaying Capsaicin in Kochuzang, which is the most characteristic hot seasoning or food in Korean foods, by making use of Fujida's $method^{2}$). Capsaicin, a hot ingredient of hot pepper, was isolated from the acetone extract of dried Kochuzang with paperchromatography and anlayzed quantitatively with Electrophotometry.

  • PDF

EFFECT OF EUGENOL ON REGULATION OF iCGRP RELEASE FROM THE BOVINE DENTAL PULP (치수에서 Eugenol이 iCGRP(immunoreactive calcitonin gene-related peptide)의 분비 조절에 미치는 영향)

  • Oh, Won-Mann;Choi, Nam-Ki;Kim, Sun-Hun
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.180-186
    • /
    • 1999
  • Eugenol has been reported to reduce odontogenic pain and is known to have a structure similar to capsaicin, a potent stimulant of certain nociceptors. We have hypothesized that the analgesic effect of eugenol may be due, in part, to inhibition of capsaicin-sensitive nociceptors. To test this hypothesis, we evaluate whether eugenol inhibits capsaicin-sensitive release of immunoreactive calcitonin generated peptide(iCGRP) from bovine dental pulp. Freshly extracted bovine incisors were transported to the lab. on ice, Spilitted and pulp tissue was removed. The tissue was chopped into 200${\mu}m$ slices. Dental pulp was superfused(340 ${\mu}l/min$) in vitro with oxygenated Kreb's buffer. Eugenol and vehicle(0.02% 2-hydroxyl-${\beta}$-cyclodextrin) were administered prior to stimulation of pulp with capsaicin and iCGRP was measured by RIA. The results were as follows: 1. Administration of eugenol has no effect on basal release of iCGRP. 2. In the vehicle treated group, capsaicin evoked a 2.5-fold increase over basal iCGRP levels. 3. Administration of eugenol(600 ${\mu}M$) reduced capsaicin evoked release of iCGRP by more than 40%(153.4${\pm}$41.1% vs 258.9${\pm}$21.7%). 4. 2-hydroxylpropyl-${\beta}$-cyclodextrin of less than 0.02% is found to be an effective vehicle to dissolve eugenol without evoking iCGRP release from dental bovine pulp. These data indicate that eugenol inhibits pulpal capsaicin-sensitive fibers and suggest that intracanal medicament of eugenol may relieve pain, in part, by this mechanism.

  • PDF

Inhibitory Effect of Capsaicin on Interleukin-8 Production by Helicobacter pylori-Infected MKN-45 Cells

  • Lee, Kwang-Hyoung;Lee, Yong-Chan;Kim, Tae-Il;Noh, Sung-Hoon;Kim, Ji-Yeon;Paik, Hyun-Dong;Kim, Chang-Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1078-1083
    • /
    • 2006
  • Capsaicin is the active ingredient in chili pepper and has an inhibitory effect on Helicobacter pylori growth and $NF-{\kappa}B$ activation. The present study examined the effect of capsaicin on interleukin (IL)-8 production by H. pylori ATCC 43504-infected MKN-45 cells, a gastric epithelial cell line. The viability of the MKN-45 cells treated with capsaicin at 0, 50, 100, 250, and $500\;{\mu}M$ was 99, 98, 99, 99, and 85%, respectively. A capsaicin concentration as low as $50\;{\mu}M$ significantly inhibited the IL-8 production induced by H. pylori ATCC 43504 infection (43.2% of control) during 24 h of incubation. However, low concentrations of capsaicin $(50\;and\;100{\mu}M)$ did not significantly inhibit the IL-8 production by $TNF-{\alpha}-$ or PMA-treated MKN-45 cells. Therefore, the overall inhibitory effect of capsaicin on H. pylori ATCC 43504 was the sum of H. pylori ATCC 43504 growth inhibition, host cell survival, and $NF-{\kappa}B$ signal cascade inhibition.

Increased Sensitivity of ras-transformed Cells to Capsaicin-induced Apoptosis

  • Kang, Hye-Jung;Yunjo Soh;Kim, Mi-Sung;Lee, Eun-Jung;Surh, Young-Joon;Kim, Seung-Hee;Aree Moon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.107-107
    • /
    • 2001
  • During the last decade, enormous progress has been made on the biological significance of apoptosis. Since ras is among the most central molecule in signaling, we asked if ras regulates apoptotic pathway. We have previously shown that H-ras, but not N-ras, induces an invasiveness and motility in human breast epithelial cells (MCF10A), while both H-ras and N-ras induce transformed phenotype. In this study, we wished to seek a chemopreventive agent that effectively induces apoptosis in H-ras-activated cells. Here we show that capsaicin, the major pungent phytochemical in red pepper, induces caspase 3-involved apoptosis selectively in H-ras activated MCF10A cells while the parental MCF10A cells are not effected. In order to study the molecular mechanisms for the increased sensitivity of H-ras MCF10A cells to capsaicin-induced apoptosis, activation of ras downstream signaling molecules, mitogen-activated protein kinases (MAPKinases), upon capsaicin treatment was investigated. Phosphorylated forms of JNK1 and p38 MAPKinase were prominently increased whereas activated ERK-1/2 was decreased by capsaicin in ras-activated cells. The parental cells did not respond to capsaicin, suggesting that capsaicin selectively induces apoptosis through modulating activities of ras downstream signaling molecules in H-ras-activated cells. Studies using chemical inhibitors (CPT-cAMP, SB203580 and PD98059) and dominant negative constructs of JNKl, p38 and MEK show that activation of JNK1 and p38 MAPKinase, but not ERK-1/2, is critical for ras-mediated apoptosis by capsaicin.

  • PDF

Capsaicin Pharmacopuncture Modulates Ankle Sprain Induced Pain in Rats (Capsaicin 약침(藥鍼)이 흰쥐의 급성(急性) 염좌(捻挫)에 마치는 효과)

  • Park, Sang-Yeon;Choi, Yoon-Young;Jeon, In-Sook;Koo, Sung-Tae;Kim, Kyoung-Sik;Sohn, In-Chul;Kim, Jae-Hyo
    • Korean Journal of Acupuncture
    • /
    • v.23 no.2
    • /
    • pp.113-123
    • /
    • 2006
  • Objectives: Pharmacopuncture which is a combination of acupuncture and herbal medicine helps to prevent and treat the diseases and symptoms including various pains. However, little was known about the therapeutic effects and its mechanisms on acute pain, although pharmacopuncture has been used frequently in acupuncture clinics. Acupuncture is known for producing analgesia for persistent ankle sprain pain in human. Furthermore, it also produces analgesia in a rat model of ankle sprain pain. Methods: To illuminate the underlying mechanisms of capsaicin pharmacopuncture-induced analgesia, weight bearing force (WBF) was observed on the acute ankle sprained rat model. Ankle sprain was induced in the rat by manually hyper-extending ligaments of the right ankle. Capsaicin pharmacopuncture was applied to SI6 (Yanglo) on the left forelimb (contralateral to the sprained ankle). Results: In behavioral test, capsaicin pharmacopuncture produced marked analgesic effects on acute ankle sprained animals as measured by WBF of the affected limb similar to manual acupuncture. Capsaicin pharmacopuncture was also suppressed by serotonin (5-HT) receptor antagonist methysergide (2 mg/kg, Lp.), but not by opioids receptor antagonist naltrexone (10 mg/kg, Lp.) and alpha adrenoceptor antagonist phentolamine (5 mg/kg, Lp.). Conclusion: The data suggest that capsaicin pharmacopuncture-induced analgesia is accomplished by activating the descending serotonergic inhibitory systems.

  • PDF

Responses of Dorsal Horn Neurons to Peripheral Chemical Stimulation in the Spinal Cord of Anesthetized Cats

  • Jung, Sung-Jun;Park, Joo-Min;Lee, Joon-Ho;Lee, Ji-Hye;Eun, Su-Yong;Kim, Sang-Jeong;Lim, Won-Il;Cho, Sun-Hee;Kim, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.15-24
    • /
    • 2000
  • Although nociceptive informations are thought to be processed via different neural mechanisms depending on the types of stimuli, sufficient data have not been accumulated yet. We performed a series of experiments to elucidate the possible neural mechanisms as to chemical stimuli such as formalin, capsaicin and ATP. Single unit activity of wide dynamic range (WDR) neurons and high threshold cells were recorded extracellularly from the lumbosacral enlargement of cat spinal cord before and after chemical stimulation to its receptive field (RF). Each chemical substance - formalin $(20{\mu}l,\;4%),$ capsaicin (33 mM) or Mg-ATP (5 mM)- was injected intradermally into the RFs and then the changes in the spontaneous activity, mechanical threshold and responses to the peripheral mechanical stimuli were observed. In many cases, intradermal injection of formalin (5/11) and capsaicin (8/11) resulted in increase of the spontaneous activity with a biphasic pattern, whereas ATP (8/8) only showed initial responses. Time courses of the biphasic pattern, especially the late response, differed between formalin and capsaicin experiments. One hour after injection of each chemical (formalin, capsaicin, or ATP), the responses of the dorsal horn neurons to mechanical stimuli increased at large and the RFs were expended, suggesting development of hypersensitization (formalin 6/10, capsaicin 8/11, and ATP 15/19, respectively). These results are suggested that formalin stimulates peripheral nociceptor, local inflammation and involvement of central sensitization, capsaicin induces central sensitization as well as affects the peripheral C-polymodal nociceptors and neurogenic inflammation, and ATP directly stimulates peripheral nociceptors.

  • PDF