• Title/Summary/Keyword: Capitate

Search Result 28, Processing Time 0.024 seconds

Stress Fracture of the Capitate

  • Cho, Hyung Joon;Hong, Ki Taek;Kang, Chang Ho;Ahn, Kyung-Sik;Kim, Yura;Hwang, Sung Tae
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.2
    • /
    • pp.135-139
    • /
    • 2018
  • Most capitate fractures occur in association with additional carpal injuries, particularly scaphoid fractures. Isolated fractures of the capitate account for only 0.3% of carpal injuries, and stress fractures are one form of this fracture. We report the case of a 20-year-old male who had a stress fracture of the capitate after serving as an honor guard in the military. Conventional radiographs and computed tomography of the right wrist revealed a minimally displaced fracture line located at the midcarpal aspect of the right capitate. A magnetic resonance imaging scan demonstrates a subarticular capitate fracture with diffuse bone marrow edema, small osteophytes, and irregularity of the midcarpal articular cartilage. We also review the carpal kinematics which possibly caused the stress fracture. Although stress fractures of the capitate are rare, they should also be accounted for with patients who perform repetitive motions of the wrist to a considerable extent.

Taxonomic study on the achene morphology of Korean Aster L. and its allied taxa (한국산 개미취속 및 근연 분류군의 열매 형태에 관한 분류학적 연구)

  • 정규영;정형진
    • Korean Journal of Plant Resources
    • /
    • v.13 no.3
    • /
    • pp.179-187
    • /
    • 2000
  • The achene morphology about 16 taxa of Korean Aster L. sensu lato were investigated to estimate its taxonomic values. The achene shapes were divided into four types; oblanceolate-oblong, obovate, oblong and obovate-oblong. The trichome shape on achene six types; uniseriate-conical, filiform, cylindrical, capitate type, long stalk capitate and globular. Their distributional features on upper part of achene four types; absent, sparse distribution of conical trichome, dense distribution of conical trichome and mixed distribution of conical and capitate trichome. The achene shapes and trichome characteristics were regarded to be a good characters in delimiting taxa because these did not differ among individuals in same taxa, but differ among the taxa. If Korean Aster L. sensu late were divided into Kalimeris, Heteropappus, Aster, Cymnaster, the capitate forms and mixed distribution of conical and capitate trichome were recognized as the good characters in delimting above section such as genus Kalimeris and Heteropappus, section Pseudocalimeris of Aster L. sensu stricto.

  • PDF

Development of the Glandular Trichomes in Trapping Leaves of Drosera Species (끈끈이주걱속 점착식 포충엽의 분비모 발달)

  • Lee, Hye-Jin;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.39 no.1
    • /
    • pp.57-64
    • /
    • 2009
  • The trapping leaves of Drosera capture insects by secreting sticky mucilage from numerous glandular trichomes (GTs) that are developed on the leaf epidermis. The present study examines and compares the structural features of those trichomes in Drosera binata and D. pygmy with the use of light and electron microscopy. The study focuses primarily on the development and differentiation pattern of the GTs during growth. Upon examination, the upper and lower epidermis were readily distinguishable by the features of GTs in developing leaves. In particular, the GTs were dense in the upper epidermis and along the leaf margin. In D. binata, the capitate GTs with elongated stalk and sessile peltate GTs were found most commonly, whereas only capitate GTs with varying degrees of the stalk length were observed in D. pygmy. Up to ca. $2.2{\sim}3.4\;mm$ long capitate GTs were seen in the leaf margins of D. binata and ca. $3.7{\sim}4.2\;mm$ long GTs having racket-like head with adaxial hemispheric structures, otherwise known as tentacles, were noted in the leaf margin of D. pygmy. The peltate GTs were found to be distributed in the lower epidermis of D. binata. In both species, head cells were dense with cytoplasm containing high numbers of Golgi bodies, ER, mitochondria and small vesicles. Secretory materials accumulated within numerous small vacuoles, then fused together to form a single large vacuole, which serves as a secretory cavity. Flection movement of the marginal GTs and leaf blade GTs, and increased mucilage secretion from the head cells upon contact with prey during the capturing process are considered to be major factors in their active insectivorous mechanism. The findings of this study will be useful in comparisons to similar findings in other species that form adhesive trapping leaves, such as Drosophyllum or Pinguicula., further contributing a better understanding of the function and structure of the trapping leaves of carnivorous plants.

Cytochemistry of cellulase in Capitate Glandular Trichomes of Pelargonium ${\times}$ fragrans (Geraniaceae)

  • Nam, Ko-Kyung;Lee, Kyung-Whan;Lee, Sang-Eun;Kim, Eun-Soo
    • 한국전자현미경학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.75-78
    • /
    • 2007
  • The localization of cellulase were investigated in the capitate glandular trichomes of Pelargonium ${\times}$ fragransby a transmission electron microscopy. The secretory cells of capitate trichomes involved in biosynthesis and its secretion. Secretory material is transported to the space between the plasma membrane and cell wall, and subsequently accumulated in the secretory cavity. The splitting of secretory cell wall during the formation of secretory cavity is suggested that wall-forming enzymes, such as cellulase, may contribute to the wall separation process. Cellulase reaction product was localized in the secretory cell, the secretory cavity and in the subcuticular wall of glandular trichomes. Reaction products were present over fibrillar matrix in the secretory cavity associated with both the inner wall and the subcuticular wall.

  • PDF

Ultrastructure of Capitate Glandular Trichome in Leaf of Thymus quinquecostatus (백리향 (Thymus quinquecostatus Celakovsky) 잎에 분포하는 두상형 분비모의 미세구조)

  • Shin, Hyun-Chur;Yu, Seong-Cheol
    • Applied Microscopy
    • /
    • v.28 no.2
    • /
    • pp.159-170
    • /
    • 1998
  • The glandular secretory system of the capitate gandular trichomes in leaf of Thymus quinquecostatus Celakovsky was examined by transmission electron microscope. The glandular trichome was consisted of three cell layers; an basal cell layer, a stalk cell with single-celled intermediate layer and a discoid secretory layer with thickened cuticle. The secretory cell was dense, rich in mitochondria, rER, plastds, Golgi complex and had many vesicular structure. Typical plastids with reticulate body and plastoglobule were present in glandular trichome. The tytoplasm of secretory cell was filled with osmiophilic secretory materials. The secretory vesicles, originated from Golgi complex, appeared as membrane bounded vesicles and secreted to the outer wall surface. The presences of well developed rER, mitochondria, Golgi complex, and membrane-bounded vesicles fused with plasmalemma in the secreting cells indicate that the granulocrine mechanism of secretion was occurring in T. quinquecostatus. Subcuticular cavity was developed between the cuticular layer and the secretory cell wall, and it formed above the secretory cell upon separation of cuticle-wall.

  • PDF

New Species of dictyostelid in Mt. Seorak, Korea : Dictyostelium caudabasis (설악산에서의 세포성 점균의 신종 : Dictyostelium caudabasis)

  • 심규철;장남기
    • The Korean Journal of Ecology
    • /
    • v.21 no.2
    • /
    • pp.163-167
    • /
    • 1998
  • One new species of cellular slime molds, Dictyostelium caudabasis sp. nov. Shim et chang, is isolated from soils in the Quercus mongolica forest of Seorak monutain, South Korea. D. caudabasis is charaterized by small sorophores, scarecely phototrophic, irregularly or sparsely branches, capitate-simple or capitate-compound and sometimes obtuse-simple tips, and conical and sometimes clavate bases. Spore are elliptical, $6.52~4.82{\times}3.40~2.83{\mu}m(avg.\;5.72{times}3.17{\mu}m$), L/W index 1.70-1.92(avg. 1.80) without polar grnules.

  • PDF

Structural Features of Glandular and Non-glandular Trichomes in Three Species of Mentha

  • Choi, Jang-Sean;Kim, Eun-Soo
    • Applied Microscopy
    • /
    • v.43 no.2
    • /
    • pp.47-53
    • /
    • 2013
  • The trichomes on leaves of three species of Mentha such as M. spicata, M. suaveolens, and M. piperita var were examined by scanning electron microscopy. Simple non-glandular trichomes and peltate glandular trichomes were distinctively occurred on these leaves. In M. spicata, short and sharp non-glandular trichomes were dominantly appeared on adaxial surface, whereas capitate glandular trichomes were commonly localized on abaxial surface. In M. suaveolens, non-glandular trichomes were identified with simple unbranched and branched. Unbranched trichomes which were sharp and pointed in shape occurred on adaxial surface, however, branched and v-shaped trichomes appeared abundantly on abaxial surface. Peltate trichomes consisted of a large eight-celled head. Small capitates trichomes consisted of a cylindrical head with an one-celled uniseriate stalk. In M. piperita var, single non-glandular trichomes and peltate trichomes were present on adaxial surface. Small capitate trichomes consisted of a globose unicellular head with a two- or three-celled uniseriate stalk. Peltate trichomes were distinctly present on abaxial surface, whereas they were not observed on adaxial surface. The trichomes were less dense in this species. Peltate trichomes consisted of a large eight-celled head, with an enlarged secretory cavity, attached to an one-celled short stalk.

Ultrastructural study of Glandular Trichomes in Pelargonium peltatum (Pelargonium peltatum 분비모의 미세구조 연구)

  • Cho, Bum-Suk;Ko, Kyoung-Nam;Kim, Eun-Soo
    • Applied Microscopy
    • /
    • v.29 no.1
    • /
    • pp.125-136
    • /
    • 1999
  • The ultrastructure of glandular trichomes in Pelargonium peltatum has been studied with a light microscope, transmission, and scanning electron microscope. Two types of the glands, long-stalked and short-stalked capitate glands, are distinguished with their shape and size of the total glands. Both glands are extreamly abundant in the leaf veins and petioles. These glandular trichomes are consisted of one secretory cell, three stalk cells, and one basal cell. The secretory cells contain a large amount of smooth endoplasmic reticulum. They have also much plastids, vacuoles, Golgi apparati, and mitochondria. High electron-dense deposits are frequently present in vacuoles of secretory cells. It seems to be phenolic compounds which is thought as the major secretory precursors.

  • PDF

The Motion Analysis of the Scaphoid, Capitate and Lunate During Dart-Throwing Motion Using 3D Images (3차원 영상을 이용한 다트 던지기 운동에서의 주상골, 유두골, 월상골의 움직임 분석)

  • Park, Chan-Soo;Kim, Kwang-Gi;Kim, Yu-Shin;Jeong, Chang-Bu;Jang, Ik-Gyu;Lee, Sang-Lim;Oh, Su-Chan;Yu, Do-Hyun;Baek, Goo-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.144-150
    • /
    • 2011
  • The primary purpose of this study was to analyze the motion of the scaphoid, capitate, and lunate during dart-throwing motion by three-dimensional modeling. Five series of CT images of five normal right wrists were acquired from five motion steps from radial extension to ulnar flexion in the dart-throwing motion plane. Segmentation and three-dimensional modeling of bones from CT images was performed using Analyze. Distances among centroids of the scaphoid, capitate and lunate and angles between principal axes of three carpal bones were calculated to analyze the motion by using MATLAB. As the wrist motion changed from radial extension to ulnar flexion, the distance between two adjacent bones decreased. The scaphoid and lunate rotated less than the capitates during dart-throwing motion. This study reports the Three-dimensional in vivo measurement of carpal motion using CT images.

Morphological Study of the Suction Trap in Aquatic Utricularia japonica (수생형 통발(Utricularia japonica)의 흡입식 포충낭 형태 연구)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.40 no.2
    • /
    • pp.109-116
    • /
    • 2010
  • Morphology and microstructure of the suction trap in aquatic Utricularia japonica were examined using scanning electron microscopy. Branched stems bear numerous suction traps without root formation. The traps are derived axillary from the node, and their antennae and appendages extend in a peculiar fashion. The trap walls are thin, two-celled, parenchyma tissue and simple, small glands are scattered in both internal and external surface of the trap. The entrance of the trap is surrounded by one pair of dorsal antennae and ventral appendages, where the former guides the prey to the entrance. Trap door is situated below the entrance and numerous sessile and stalked capitate trichomes cover the entrance and even on the door surface. The capitate trichomes are secretory, but four trigger hairs formed on the central areas of the door are not. They are believed to function in activating and tripping the trap door. A specialized region of the threshold come in contact with the lower portion of the door upon closing. The secretory capitate trichomes near this region are responsible for producing and secreting a mucilage-like substance which composes the velum. Two-armed bifid glands are located in the interior side of the threshold, while four-armed quadrifid glands are considerably numerous occurring over the entire inner trap wall. Bifid and quadrifid glands develop semi-spherical basal cells that connect them to the inner wall surface. Antennae, trigger hairs, capitate trichomes, bifid and quadrifid glands are more important structures in the carnivory of U. japonica.