• Title/Summary/Keyword: Capillary Pressure

Search Result 306, Processing Time 0.024 seconds

One-Touch Type Immunosenging Lab-on-a-chip for Portable Point-of-care System (휴대용 POC 시스템을 위한 원터치형 면역 센싱 랩온어칩)

  • Park, Sin-Wook;Kang, Tae-Ho;Lee, Jun-Hwang;Yoon, Hyun-C.;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1424-1429
    • /
    • 2007
  • This paper presents a simple and reliable one-touch type multi-immunosensing lab-on-a-chip (LOC) detecting antibodies as multi-disease markers using electrochemical method suitable for a portable point-of-care system (POCS). The multi-stacked LOC consists of a PDMS space layer for liquids loading, a PDMS valve layer with 50 im in height for the membrane, a PDMS channel layer for the fluid paths, and a glass layer for multi electrodes. For the disposable immunoassay which needs sequential flow control of sample and buffer liquids according to the designed strategies, reliable and easy-controlled on-chip operation mechanisms without any electric power are necessary. The driving forces of sequential liquids transfer are the capillary attraction force and the pneumatic pressure generated by air bladder push. These passive fluid transport mechanisms are suitable for single-use LOC module. Prior to the application of detection of the antibody as a disease marker, the model experiments were performed with anti-DNP antibody and anti-biotin antibody as target analytes. The flow test results demonstrate that we can control the fluid flow easily by using the capillary stop valve and the PDMS check valves. By the model tests, we confirmed that the proposed LOC is easily applicable to the bioanalytic immunosensors using bioelectrocatalysis.

A Study on Manufacture and Performance Evaluation of a Loop Heat Pipe System with a Cylindrical Evaporator for IGBT Cooling (전력반도체 냉각을 위한 원통형 루프히트파이프 제작 및 성능 평가에 관한 연구)

  • Ki, Jae-Hyung;Ryoo, Seong-Ryoul;Sung, Byung-Ho;Kim, Sung-Dae;Choi, Jee-Hoon;Kim, Chul-Ju
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1710-1716
    • /
    • 2008
  • The Loop Heat Pipe (LHP) operates to pump the working fluid by means of the capillary force in a wick structure. Particularly, it is difficult to design and manufacture the evaporator consisted of a grooved container and a compensation chamber as well as the wick structure. This study is related to design and manufacture the grooved container coupled with wick structure, the properties of the wick structure such as the permeability, the porosity, and the maximum capillary pressure were measured to apply the cooling technology for Insulated Gate Bipolar Transistor (IGBT). The container of the LHP was manufactured by the electrical discharge process and the wick structure was sintered with the nickel particle by an axial-press apparatus with the pulse electronic discharge. As results, the properties of the wick were experimentally obtained about 60% of the porosity, 35kPa of the maximum capillary force and $1.53{\times}10-13m2$ of the permeability.

  • PDF

Permeability features of concretes produced with aggregates coated with colemanite

  • Bideci, Ozlem Salli;Bideci, Alper;Oymael, Sabit;Gultekin, Ali Haydar;Yildirim, Hasan
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.833-845
    • /
    • 2015
  • In the world total boron reserve rating, Turkey is taken place on the first rank, meeting the demand of refined mineral and main boron chemicals. Development of the new boron products and production technologies, spreading the using area of the boron are the study topics which must be finically discussed. In this study, with the help of colemanite taken in ratio as (0%, 7.5%, 12.5%, and 17.5%) by being mixed by the cement, surfaces of the pumice aggregates have been covered. Permeability of the samples has been investigated by producing lightweight concrete with 400 dose with the help of aggregates covered with colemanite. For this, the experiments of water absorption, capillary water absorption, depth of penetration of water under pressure and rapid chloride permeability have been performed. In addition, analyses of the thin section of covered and uncovered pumice aggregates and SEM (Scanning Electron Microscope) have been investigated. When the control samples produced with the covered aggregates and concretes produced with colemanite covered aggregates are compared each other, it has been determined that special lightweight concretes whose values of capillary water absorption experiment, depth of penetration of water under pressure experiment and rapid chloride permeability are low can be produced.

Effects of the Mass of Working Fluid on the Thermal Performance of Heat Pipe with Axial Grooves (그루브형 히트파이프에서 작동유체량이 히트파이프 성능에 미치는 영향)

  • Suh, Jeong-Se;Park, Young-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • An analytical and experimental study of the thermal performance of axial heat pipe with axial groove is conducted to determine the optimal mass of working fluid for the maximum heat transport capacity of heat pipe with axial grooves. Generally, the mass of working fluid has been fully charged by considering only a geometrical shape of axial grooves embedded in a heat pipe. When the heat pipe is operated in a steady state, the meniscus re-cession phenomena of working fluid is occurred in the evaporator region. In this work, the optimal mass of working fluid was obtained from the axial variation of capillary pressure, the radius of curvature and wetting angle of meniscus of liquid-vapor interface. Experimental results were also obtained by varying the mass of working fluid within a heat pipe, and presented for the maximum heat transport capacity corresponding to the operating temperature and the elevation of heat pipe. Finally, the analytical results of the optimal mass of working fluid were compared with those of the experimental mass of working fluid.

Design and Fabrication of a Micro-Heat Pipe with High-Aspect-Ratio Microchannels (고세장비 미세채널 기반의 마이크로 히트파이프 설계 및 제조)

  • Oh, Kwang-Hwan;Lee, Min-Kyu;Jeong, Sung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.164-173
    • /
    • 2006
  • The cooling capacity of a micro-heat pipe is mainly governed by the magnitude of capillary pressure induced in the wick structure. For microchannel wicks, a higher capillary pressure is achievable for narrower and deeper channels. In this study, a metallic micro-heat pipe adopting high-aspect-ratio microchannel wicks is fabricated. Micromachining of high-aspect-ratio microchannels is done using the laser-induced wet etching technique in which a focused laser beam irradiates the workpiece placed in a liquid etchant along a desired channel pattern. Because of the direct writing characteristic of the laser-induced wet etching method, no mask is necessary and the fabrication procedure is relatively simple. Deep microchannels of an aspect ratio close to 10 can be readily fabricated with little heat damage of the workpiece. The laser-induced wet etching process for the fabrication of high-aspect-ratio microchannels in 0.5mm thick stainless steel foil is presented in detail. The shape and size variations of microchannels with respect to the process variables, such as laser power, scanning speed, number of scans, and etchant concentration are closely examined. Also, the fabrication of a flat micro-heat pipe based on the high-aspect-ratio microchannels is demonstrated.

Effects of the Charging Mass of Working Fluid on the Thermal Performance of Heat Pipe with Axially Grooved Wick

  • Suh, Jeong-Se;Kang, Chang-Ho;Hong, Jung-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.79-86
    • /
    • 2004
  • An analytical and experimental study has been conducted to determine the optimal charging mass of working fluid for the maximum heat transport capacity of heat pipe with axially grooved wick. When the heat pipe is operated in a steady state, the liquid-vapor meniscus recession of working fluid to the bottom of groove is occurred in the evaporator region. In this work, the optimal charging mass of working fluid was obtained by considering the meniscus recession from the axial variation of capillary pressure, the radius of curvature and wetting angle of meniscus of liquid-vapor interface. Experimental results were also obtained by varying the charging mass of working fluid within a heat pipe, and presented for the trend of maximum heat transport capacity corresponding to the operating temperature and the elevation of heat pipe. Finally, the analytical results of the optimal charging mass of working fluid were compared with those from the experiment, both of which were in good agreement with each other.

Performance Analysis of a Refrigeration System with Parallel Control of Evaporation Pressure (증발압력 병렬제어 냉동시스템의 성능해석)

  • Lee, Jong-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.567-573
    • /
    • 2008
  • The conventional refrigeration system is composed of a compressor, condenser, receiver, expansion valve or capillary tube, and an evaporator. The refrigeration system used in this study has additional expansion valve and evaporator along with an evaporation pressure regulator(EPR) at the exit side of the evaporator. The two evaporators can be operated at different temperatures according to the opening of the EPR. The experimental results obtained using the refrigeration system with parallel control of evaporation pressure are presented and the performance analysis of the refrigeration system with two evaporators is conducted.

Simulation of the flow characteristics of R1234yf flowing through capillary tubes (냉매 R1234yf의 모세관내 유동 특성에 관한 해석적 연구)

  • Kim, Daeyeong;Park, Chasik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6452-6457
    • /
    • 2014
  • R1234yf has been developed as an alternative refrigerant to R134a, which has been associated with global warming. The capillary tubes as expansion valves control the mass flow rate and balance system pressure in the refrigeration cycle. The present numerical model used the governing equations including the law of conservation of mass, momentum, and energy in a capillary tube. The mass flow rate of R1234yf decreased by 47.0% as the capillary tube length was increased from 1 to 4 m. As the inner diameter of the capillary tubes was changed from 1.3 to 1.7 mm, the mass flow rate of R134a and R1234yf increased by 117.9% and 121.0%, respectively. The mass flow rate of the R134a and R1234yf increased by 28.3% and 29.1% with subcooling increasing from 0 to $7^{\circ}C$. In addition, when the inlet temperature of the capillary tubes was changed from 35 to $60^{\circ}C$, the mass flow rate of R134a and R1234yf increased by 31.0% and 45.4%, respectively.

The Effect of Transverse Vibration on Red Blood Cell Aggregation and Blood Viscosity

  • Shin, Se-Hyun;Ku, Yun-Hee;Park, Myung-Su;Suh, Jang-Soo
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.2
    • /
    • pp.4-12
    • /
    • 2003
  • The present study investigated the effect of transverse vibration on the hemorheological characteristics of blood using a newly designed pressure-scanning capillary viscometer. As vibration was applied, aggregated blood cells (rouleaux) were disaggregated. The range of vibration frequency and amplitude are $0{\sim}100\;Hz$ and $0{\sim}0.8\;mm$, respectively for a capillary diameter 0.84 mm. As vibration increased, blood viscosity initially increased and tended to decrease. In order to delineate the unexpected results, the present study proposed two counteracting mechanisms of vibration related with red blood cell (RBC) aggregation affecting hemo-rheological properties. One is the reduction of RBC aggregation due to vibration causing an increase of blood viscosity. The other is forced cell migration due to the transverse vibration, which in turn forms a cell-free layer near the tube wall and causes a decrease of flow resistance.

  • PDF

Three-Dimensional Modeling of Void Formation During Resin Transfer Molding (RESIN TRANSFER MOLDING 공정에서의 기공 형성에 관한 3차원 모델링)

  • Bae, Jun-Ho;Kang, Moon-Koo;Lim, Seoug-Taek;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.246-250
    • /
    • 2001
  • In resin transfer molding (RTM), resin is forced to flow through the fiber perform of inhomogeneous permeability. This inhomogeneity is responsible for the mismatch of resin velocity within and between the fiber tows. The capillary pressure of the fiber tows exacerbates the spatial variation of the resin velocity. The resulting microscopic perturbations of resin velocity at the flow front allow numerous air voids to form. In this study, a mathematical model was developed to predict the formation and migration of micro-voids during resin transfer molding. A transport equation was employed to account for the migration of voids between fiber tows. Incorporating the proposed model into a resin flow simulator, the volumetric content of micro-voids in the preform could be obtained during the simulation of resin impregnation.

  • PDF