• Title/Summary/Keyword: Capacity spectrum method

Search Result 202, Processing Time 0.044 seconds

A Comprehensive Groundwater Modeling using Multicomponent Multiphase Theory: 1. Development of a Multidimensional Finite Element Model (다중 다상이론을 이용한 통합적 지하수 모델링: 1. 다차원 유한요소 모형의 개발)

  • Joon Hyun Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.89-102
    • /
    • 1996
  • An integrated model is presented to describe underground flow and mass transport, using a multicomponent multiphase approach. The comprehensive governing equation is derived considering mass and force balances of chemical species over four phases(water, oil, air, and soil) in a schematic elementary volume. Compact and systemati notations of relevant variables and equations are introduced to facilitate the inclusion of complex migration and transformation processes, and variable spatial dimensions. The resulting nonlinear system is solved by a multidimensional finite element code. The developed code with dynamic array allocation, is sufficiently flexible to work across a wide spectrum of computers, including an IBM ES 9000/900 vector facility, SP2 cluster machine, Unix workstations and PCs, for one-, two and three-dimensional problems. To reduce the computation time and storage requirements, the system equations are decoupled and solved using a banded global matrix solver, with the vector and parallel processing on the IBM 9000. To avoide the numerical oscillations of the nonlinear problems in the case of convective dominant transport, the techniques of upstream weighting, mass lumping, and elementary-wise parameter evaluation are applied. The instability and convergence criteria of the nonlinear problems are studied for the one-dimensional analogue of FEM and FDM. Modeling capacity is presented in the simulation of three dimensional composite multiphase TCE migration. Comprehesive simulation feature of the code is presented in a companion paper of this issue for the specific groundwater or flow and contamination problems.

  • PDF

Study of CO2 Absorption Characteristic and Synthesis of 1-(2-methoxyethyl)-3-methylimidazoLium Methanesulfonate Ionic Liquid (1-(2-methoxyethyl)-3-methylimidazolium Methanesulfonate 이온성 액체 합성 및 CO2 흡수 특성 연구)

  • Jin, Yu Ran;Jung, Yoon Ho;Park, So Jin;Baek, Il Hyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.35-40
    • /
    • 2012
  • In this study, 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate ionic liquid has been synthesized, characterized and tested with respect to carbon dioxide absorption with the aim to use it as advanced absorbent materials in fossil fuel processing. The ionic liquid was synthesized by a one step method, low cost. The thermal and chemical stability of selected ionic liquid has been investigated by DSC, TGA and the structure was verified by $^1H$-NMR spectroscopy. The solubility of carbon dioxide in the methanesulfonate-based ionic liquids were measured using a high-pressure equilibrium apparatus equipped with a variable-volume view cell at 30, 50 and $70^{\circ}C$ and pressure up to 195 bar. The results show that carbon dioxide solubilities of 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate increased with pressure increasing and temperature decreasing, and the carbon dioxide absorption capacity showed 27.6 $CO_2/IL$(g/kg) at $30^{\circ}C$, 13 bar.