• 제목/요약/키워드: Capacity of heat exchanger

검색결과 286건 처리시간 0.028초

In-Situ Performance Analysis of Centrifugal Chiller According to Varying Conditions of Chilled and Cooling Water (현장에서 운전중인 터보냉동기의 냉수와 냉각수 조건 변화에 따른 성능 해석)

  • Kim, Yeong-Il;Jang, Yeong-Su;Sin, Yeong-Gi;Baek, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제26권3호
    • /
    • pp.482-490
    • /
    • 2002
  • This paper presents modelling and analyzing method of centrifugal chiller which has a rated capacity of 200 RT(703 kW) through on-site performance test. Field performance data of a chiller installed in a research building of KIST have been collected. Simple models were developed for predicting the heat exchanger and system performances by regression of chiller operation data during 5 days in August. The models proposed here account for the effect of variations of cooling capacity, temperatures and flew rates of secondary fluids. The proposed models can predict the actual performance data from June to September within $\pm$ 5% error. The COP of centrifugal chiller are estimated under the standard rating conditions and reduced mass flow rates of chilled and cooling water.

Heat Transfer Performance Variation of Condenser due to Non-uniform Air Flow (불균일한 풍속분포에 따른 응축기의 열전달 성능 변화)

  • Lee, Won-Jong;Jeong, Ji Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제26권4호
    • /
    • pp.193-198
    • /
    • 2014
  • Heat transfer performance variation of a condenser caused by non-uniform distribution of air flow was investigated using a numerical simulation method. A heat exchanger used for a outdoor unit of a commercial heat pump system and represented by a numerical model was selected. Non-uniform profile of air-velocity was constructed by measuring the air velocity at various locations of the outdoor unit. Simulation was conducted for various refrigerant circuits and air flow conditions. Simulation results show that the heat transfer capacity was reduced depending on the air-flow rate and the refrigerant circuit configuration. It is also shown that the capacity reduction rate is increased as the average air velocity decreases.

Experimental Study on the Performance Characteristics of a CO2 Air-conditioning System for Vehicles (자동차용 CO2 에어컨 시스템의 성능 특성에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제23권1호
    • /
    • pp.18-24
    • /
    • 2015
  • In this study, a $CO_2$ air-conditioning system was investigated with different types of electrically driven compressors, parallel flow type gas cooler, four-pass type evaporator, internal heat exchanger integrated with accumulator, and electric expansion valve. The experimental study was conducted under various operating conditions (ie., different rotational compressor speeds, air inlet temperatures and air velocity coming into heat exchangers). The experimental results showed the cooling capacity was 3.5kW at $35^{\circ}C$ ambient temperature when the vehicle was idle (ie., the worst condition for cooling off the gas cooler). In terms of performance effect of the compressor, the e-RP model had a slightly better cooling capacity and coefficient of performance than the e-GR model under the same test conditions. An experimental equation for optimum cooling-performance control was also suggested based on the results. A high-pressure control algorithm for the super critical cycle was determined to achieve both maximum cooling performance and efficient energy consumption. The results from the experimental equation coincided with those of previous experimental studies.

Performance of a Refrigerant Heating Type Heat Pump by Changing of Driving Devices and Heat Exchangers (구동장치 및 열교환기 변경에 따른 냉매가열식 열펌프의 성능특성)

  • Park, Youn-Cheol;Kim, Sang-Hyuk;Kim, Ji-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제20권1호
    • /
    • pp.49-56
    • /
    • 2008
  • When the outdoor air temperature decreased less than the freezing temperature, frost forms at the surface of heat exchangers and it makes the performance degradation of a heat pump system. In this study, a heat pump system has been developed which has a refrigerant heating device as an auxiliarly heating equipment. To reduce power consumptions of the system, a liquid pump, rather than a compressor, was used to drive refrigerant in the heat pump cycle. Ratio of refrigerant mass flow between a refrigerant heating heat exchanger(GHX) and a outdoor plate heat exchanger(PHX) was varied and the system performance was measured and analyzed. As results, when the refrigerant flow rate to the GHX was decreased, the system performance is decreased due to heat absorption capability restriction of the GHX and small variation of the power consumption in the compressor. The effect on the evaporating and condensing pressure by the distribution ratio of the refrigerant to the each heat exchanger is small compare to the effect by the frequency change in the compressor. When the compressor was replaced by the liquid pump, the capacity of the system decreased a little, however the power consumption decrease approximately 80% compare with the power used in the compressor.

Performance Analysis of an Air-Cycle Refrigeration System (공기사이클 냉동시스템의 성능해석)

  • Won, Sung-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제24권9호
    • /
    • pp.671-678
    • /
    • 2012
  • The objective of this study is to analyze theoretically the performance of an open air-cycle refrigeration system in which environmental concerns increase. The pressure ratio of the external compressor and efficiencies of the components that compose of the system are selected as important parameters. As the pressure ratio of the external compressor increases, the pressure ratio of the ACM compressor is determined high, the refrigerating temperature and capacity increase, the COP decreases, and the total entropy production rate increases. The effect of heat exchanger effectiveness and turbine efficiency on the performance are greater than that of the ACM compressor efficiency. Also the performance of the air-cycle refrigeration system with two heat exchangers has been enhanced like high COP and low total entropy production rate, compared to the system with one heat exchanger.

Cooling Performance Analysis of Ground-Source Heat Pump System with Capacity Control with Outdoor Air Temperature (외기 온도 제어 방식을 적용한 지열 히트펌프 시스템의 냉방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • 제17권4호
    • /
    • pp.68-78
    • /
    • 2021
  • In order to solve the increasing deterioration of the energy shortage problem, ground-source heat pump (GSHP) systems have been widely installed. The control method is a significant component for maintaining the long-term performance and for reducing operation cost of GSHP systems. This paper presents the measurement and analysis results of the cooling performance of a GSHP system using capacity control with outdoor air temperature. For this, we installed monitoring equipments including sensors for measuring temperature, flow rate and power consumption, and then monitored operation parameters from July 9, 2021 to October 2, 2021. From measurement results, we analyze the effect of capacity control with outdoor air temperature on the cooling performance of the system. The average performace factor (PF) of the heat pump was 6.95, while the whole system was 5.54 over the measurement period. Because there was no performance data of the existing GSHP system, it was not possible to directly compare the existing control method and the outdoor air temperature method. However, it is expected that the performance of the entire system will be improved by adjusting the temperature of cold water produced by the heat pump, that is, the temperature of cold water on the load side according to the outside air temperature.

Effect of LiBr solution flow rates in commercial absorption chiller (상용 흡수식 냉동기에서 LiBr 수용액 유량변화에 따른 영향)

  • Choi, S.H.;Chung, B.C.;Nam, L.W.;Jurng, J.;Chin, S.
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.292-297
    • /
    • 2001
  • This paper discusses the effect of varying LiBr solution circuits flow rates for a direct fired double effect commercial absorption chiller in the parallel flow configuration. The effects of solution flow rates have been investigated for generator, condenser, solution heat exchanger, absorber and evaporator. According to the result of this work, it was found that sensible heat rate of generator increases and refrigerant vapor generated in that decreases when inlet solution flow rate of that increases. As solution flow rate of absorber increases, the degree of superheat increases because of decreasing solution heat exchanger efficiency. The flashing vapor at the top of absorber increases in proportion to the degree of superheat whileas decreases cooling capacity inversely.

  • PDF

Performance evaluation of R22 alternative refrigerants (R22 대체냉매의 성능 평가)

  • 송용재;박봉진;정동수;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제10권3호
    • /
    • pp.292-302
    • /
    • 1998
  • In this study, 14 refrigerant mixtures composed of R32, R125, R134a, R143a, R152a, and R1270(Propylene) were tested in a breadboard heat pump in an attempt to replace R22 used in most of the residential air conditioners and heat pumps. The heat pump was of 1 ton capacity and water was employed as the secondary heat transfer fluids. All tests were conducted under ARI test A condition. Ternary mixtures composed of R32, R125, and R134a were shown to have 4∼5% higher COP and capacity than R22 and hence they seem to be very promising candidates to replace R22. On the other hand, ternary mixtures containing R125, R134a, and R152a have lower COP and capacity than R22. R32/R134a binary mixtures show a 7% increase in COP and have the similar capacity to that of R22 and hence they are also good candidates to replace R22. Special care must be exercised when a suction line heat exchanger is used with these mixtures in air conditioners. Finally, the compressor discharge temperatures of all mixtures tested were lower than those of R22 by 15.g∼34.7t, which indicates that these mixtures would offer better system reliability and longer life time than R22.

  • PDF

Optimum Design Condition of the Collins Cryocooler (Collins 내동기의 최적 설계조건)

  • Lee, S.W.;Kim, S.Y.;Jung, P.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제4권3호
    • /
    • pp.183-190
    • /
    • 1992
  • The Collins cryocooler is numerically analysed with the optimization technique, and the optimum operating and design conditions are searched. This paper shows that liquefied helium quantity has an external maximum w.r.t. the total mass flow rate, the mass flow rates through expander and the capacities of heat exchangers. The liquefied helium quantity increases as the compressor exit pressure of the cryocooler does. The maximum quantity of liquefied helium and the maximum coefficient of performance have been found to exist in extremum, depending on the ratios of each heat exchanger capicities to the total one. At the optimum condition, the capacity of heat exchanger in high temperature region is larger than that in low temperature region.

  • PDF

Study on the Exhaust Heat Recovery Equipment in a Factory - On the Performance of a U-shape Multitube Heat Exchanger - (공장폐열(工場廢熱) 회수장치(回收裝置)에 관한 연구(硏究) -U자형(字型) 다관식(多管式) 열교환기(熱交換機)의 성능(性能)에 관하여-)

  • Kim, Yung Bok;Song, Hyun Kap
    • Journal of Biosystems Engineering
    • /
    • 제8권2호
    • /
    • pp.49-61
    • /
    • 1983
  • U shape multitube heat exchanger was equipped in the flue to recover the exhaust heat from the boiler system. The fluids of the exhaust heat recovery equipment were the flue gas as the hot fluid, and the water as the cold fluid. The flow geometry of the fluids was cross flow - two pass, the hot fluid being mixed and the cold fluid unmixed. The results of the theoretical and the experimental analysis and the economic evaluation are summarized as follows. 1) The heat exchanger effectiveness and the temperature efficiency of the hot fluid were about 35% when the fuel consumption rate was 140 - 150 L/15min. The temperature efficiency for the cold fluid ranged from 3.0% to 4.5%. The insulation efficiency ranged from 85% to 98%, which was better than the KS air preheater insulation efficiency of 90%. 2) The relationship between the fuel consumption rate, F, and the outlet temperature, $T_{h2}$, of the flue gas from the heat exchanger was $T_{h2}$ = 0.927F + 110. In order to prevent the low temperature corrosion from the coagulation of $SO_3$, it is necessary to maintain the fuel consumption rate above 82 L/15min. 3) The ratio of the exhaust heat from the boiler system to the total energy consumption was about 14.5%. With the installation of the exhaust heat recovery equipment, the energy recovery ratio to the exhaust heat was about 25%. Accordingly, about 3.6% of the total fuel consumption was estimated to be saved. 4) Economic analysis indicated that the installation of the exhaust heat recovery equipment was feasible to save the energy, because the capital reocvery period was only 10 months when the fuel consumption rate was 80 L/15min. 4 months when it was 160 L/15min. 5) Based on the theoretical and the experimental analysis, it was estimated to save the energy of about 18 million Won per year, if four heat exchangers are installed in a factory. 6) A further study is recommended to identify the relationship among the flow rate of the exhaust gas, the size of the heat exchanger and the capacity of the air preheater. For a maximum heat recovery from the exhaust gas an automatic control system is required to control the flow rate of the cold fluid depending on the boiler load.

  • PDF