• Title/Summary/Keyword: Capacity Ratio

Search Result 3,736, Processing Time 0.028 seconds

Characteristic of Bearing Capacity of Shallow Foundation upon Clay Ground Replaced by Sands Depending on Bearing Capacity Ratio (모래로 치환된 점토지반의 지지력비에 따른 얕은 기초의 지지력 특성)

  • Ha, Young-Min;Jung, Min-Hyung;Sin, Hyo-Hee;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.17-25
    • /
    • 2011
  • In this study, we considered the bearing capacity of strip footing over clay layers partially replaced by sand. The FEM analysis is performed to calculate the ultimate bearing capacity. Partial replacement is defined by multiples of footing width(B) and inclination of sides. The cases(B'=inf.) of sand layers equal to clay layers are preferentially conducted. The baring capacity of B'=inf. is comparative value for bearing capacity of partial replacement layers. ${\beta}$ is the ratio of ultimate bearing capacity of B'=inf and partial ultimate bearing capacity replacement. ${\beta}$ is used to analyze the characteristic of bearing capacity of clay layers partially replaced by sand. Each of the three undrained shear strengths of clay and friction angles of sand is considered. The result of this analysis shows that ${\beta}$ depends on sand depth.

Effect of N Value and Pile Length Ratio on Bearing Capacity Distribution of Cohesionless Soil (사질토 지반에서 N값과 말뚝의 길이비가 지지력 분담 특성에 미치는 영향)

  • Lee, Kwang-Wu;You, Seung-Kyong;Han, Jung-Geun;Park, Jeong-Jun;Kim, Ki-Sung;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.65-73
    • /
    • 2020
  • This study describes the evaluation results of pile length ratio and N value on the bearing capacity of drilled shafts in cohesionless soil. The bearing capacity ratio in Meyerhof's formula is affected only by the length ratio, and it is equally evaluated a sharing ratio of the end bearing capacity and the skin friction. NAVFAC's formula shows that the pile length influences both end bearing capacity and the skin friction, but pile length is also found to be a more influence factor on the end bearing capacity. Especially, it was found that the effect of pile length factor was larger than the effect of N value and pile diameter. FHWA's formula was evaluated to reflect the influence factor by skin friction more positively than other formulas at calculation the bearing capacity. It was also confirmed that the influence of the skin friction is larger when the ultimate bearing capacity is evaluated.

Research on damage of solid-web steel reinforced concrete T-shaped columns subjected to various loadings

  • Xue, Jianyang;Zhou, Chaofeng;Liu, Zuqiang
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.409-423
    • /
    • 2017
  • This paper presents an experimental study on damage evolution laws of solid-web steel reinforced concrete (SRC) T-shaped columns along the direction of the web under various loadings. Ten specimens with a scale ratio of 1/2 and a shear span ratio of 2.5 were designed and fabricated. The influences of various parameters, including the axial compression ratio, steel ratio, and loading mode, were examined. The mechanical performances including load-displacement curve and energy dissipation capacity under the monotonic and low cyclic loadings were analyzed. Compared with the monotonic loading, bearing capacity, ultimate deformation capacity, and energy dissipation capacity of the specimens decrease to some extent with the increase of the displacement amplitude and the number of loading cycle. The results show that the damage process of the SRC T-shaped column can be divided into five stages, namely non-damage, slight-damage, steadily-developing-damage, severe-damage and complete-damage. Finally, based on the Park-Ang model, a modified nonlinear damage model which combines the maximum deformation with hysteretic energy dissipation is proposed by taking into account the dynamic influence of the aforementioned parameters. The results show that the modified model in this paper is more accurate than Park-Ang model and can better describe the damage evolution of SRC T-shaped columns.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Centrifugal Modeling of Sand Compaction Pile (모래다짐말뚝의 원심모델링)

  • Yoo, Nam-Jae;Jeong, Gil-Soo;Kim, Sang-Jin;Chae, Seung-Ho
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.187-193
    • /
    • 2001
  • This paper is results of extensive centrifuge model experiments about design factors influencing the bearing capacity and the settlement behaviors of SCP (Sand Compaction Pile). Centrifuge model tests were carried out changing design factors for SCP method such as replacement area ratio (as= 20, 40, 70%), improvement ratio to footing width (W/B = 1, 2, 3), and amount of fines in sand pile (#200 = 5, 10, 15). Therefore, the effects of these design factors on the bearing capacity and the settlement behavior of SCP were investigated and changes of stress concentratio rato due to such an design factors were also investigated. Centrifuge model testing technique for preparing and installing centrifuge model of sand compaction pile, using freezing them, was also developed. As results of centrifuge model tests, more fines in sand compaction pile increases the bearing capacity of SCP. Optimum improvement ratio to footing width was found to be 2. Values of stress concentration ratio was in the ranges of 1.5 - 3.5. The depth of bulging in sand piles was found in the range of 2.0 - 2.5 times of pile diameter.

  • PDF

Stress Concentration Characteristics of Soft Ground Treated by Sand Compaction Pile (모래다짐말뚝으로 개량된 연약지반의 응력분담특성)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Kim, Sang-Jin
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.145-151
    • /
    • 2002
  • This paper is results of extensive centrifuge model experiments about design factors influencing the bearing capacity and the settlement behaviors of SCP (Sand Compaction Pile). Centrifuge model tests were carried out changing design factors for SCP method such as replacement area ratio (as= 20, 40, 70%), Improvement ratio to footing width (W/B = 1, 2, 3), and amount of fines m sand pile (#200 = 5, 10, 15). Therefore, the effects of these design factors on the bearing capacity and the settlement behavior of SCP were investigated and changes of stress concentratio rato due to such an design factors were also investigated. Centrifuge model testing technique for preparing and installing centrifuge model of sand compaction pile, using freezing them, was also developed. As results of centrifuge model tests, more fines in sand compaction pile increases the bearing capacity of SCP. Optimum improvement ratio to footing width was found to be 2. Values of stress concentration ratio was in the ranges of 1.5 - 3.5. The depth of bulging in sand plies was found in the range of 2.0 - 2.5 times of pile diameter.

  • PDF

Effect of Embedment Ratio and Loading Rate on Uplift Adhesion Factor of Concrete Driven Pile (근입비와 인발속도가 콘크리트 항타말뚝의 인발부착계수에 미치는 영향)

  • Kim Jong-In;Park Jeong-Jun;Shin Eun-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.367-371
    • /
    • 2005
  • Pile foundations are utilized when soil is so weak that shallow foundations are not suitable or point load is concentrated in small area. Such soil can be formed by the land reclamation works which have extensively been executed along the coastal line of southern and western parts of the Korean Peninsula. The working load at pile is sometimes subjected to not only compression load but also lateral load sad uplift forces. But in most of the practice design, uplift capacity of pile foundation is not considered and estimation of uplift capacity is presumed on the compression skin friction. This study was carried out to determine that the effect of embedment ratio and loading rate on uplift adhesion factor of concrete pile driven in clay. Based on the test results, the critical embedment ratio is about 9. Adhesion factor is constant under the critical embedment ratio, and decreasing over the critical embedment ratio. Also, adhesion factor is increased with the loading rate is increased.

The behavior of lightweight aggregate concrete filled steel tube columns under eccentric loading

  • Elzien, Abdelgadir;Ji, Bohai;Fu, Zhongqiu;Hu, Zhengqing
    • Steel and Composite Structures
    • /
    • v.11 no.6
    • /
    • pp.469-488
    • /
    • 2011
  • This paper consists of two parts; the first part describes the laboratory work concerning the behavior of lightweight aggregate concrete filled steel tubes (LACFT). Based on eccentricity tests, fifty-four specimens with different slenderness ratios (L/D= 3, 7, and 14) were tested. The main parameters varied in the test are: load eccentricity; steel ratio; and slenderness ratio. The standard load-strain curves of LACFT columns under eccentric loading were summarized and significant parameters affecting LACFT column's bearing capacity, failure mechanism and failure mode such as confinement effect and bond strength were all studied and analyzed through the comparison with predicted strength of concrete filled steel tube columns (CFT) using the existing codes such as AISC-LRFD (1999), CHN DBJ 13-51-2003 (2003) and CHN CECS 28:90 (1990). The second part of this paper presents the results of parametric study and introduces a practical and accurate method for determination of the maximum compressive strength of confined concrete core ($f_{max}$), In addition to, the study of the effect of aspect-ratio and length-width ratio on the yield stress of steel tubes ( $f_{sy}$) under biaxial state of stress in CFT columns and the effect of these two factors on the ultimate load carrying capacity of axially loaded CFT/LACFT columns.

Shear mechanism of steel fiber reinforced concrete deep coupling beams

  • Li, Kou;Zhao, Jun;Ren, Wenbo
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • Deep coupling beams are more prone to suffer brittle shear failure. The addition of steel fibers to seismic members such as coupling beams can improve their shear performance and ductility. Based on the test results of steel fiber reinforced concrete(SFRC) coupling beams with span-to-depth ratio between 1.5 and 2.5 under lateral reverse cyclic load, the shear mechanism were analyzed by using strut-and-tie model theory, and the effects of the span-to-depth ratio, compressive strength and volume fraction of steel fiber on shear strengths were also discussed. A simplified calculation method to predict the shear capacity of SFRC deep coupling beams was proposed. The results show that the shear force is mainly transmitted by a strut-and-tie mechanism composed of three types of inclined concrete struts, vertical reinforcement ties and nodes. The influence of span-to-depth ratio on shear capacity is mainly due to the change of inclination angle of main inclined struts. The increasing of concrete compressive strength or volume fraction of steel fiber can improve the shear capacity of SFRC deep coupling beams mainly by enhancing the bearing capacity of compressive struts or tensile strength of the vertical tie. The proposed calculation method is verified using experimental data, and comparative results show that the prediction values agree well with the test ones.

Comparison of Bearing Capacity between SCP and GCP by Unit Cell Model Tests (단일말뚝 형태의 모형시험을 통한 SCP와 GCP의 극한지지력 비교)

  • 김병일;이승원;김범상;유완규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.41-48
    • /
    • 2004
  • Several centrifuge modelling tests were performed to compare sand compaction pile (SCP) with gravel compaction pile (GCP) at the point of bearing capacity. SCP and GCP were installed as 30, 40, 50, 60, 70% of replacement ratio in cylindrical model tank (diameter = 20 cm, height = 40 cm), and the loading tests were carried out to analyze the bearing characteristics of soft clay ground reinforced by SCP and GCP. As a result of loading tests, the bearing capacities of soft grounds reinforced by SCP and GCP increase with increasing replacement ratio of pile, and a GCP reinforced ground has larger bearing capacity than that of a SCP reinforced ground. Several proposed bearing capacity equations for ground reinforced by SCP or GCP were compared with loading test results.