• Title/Summary/Keyword: Capacity Design

Search Result 5,656, Processing Time 0.029 seconds

Comparison of Safety Margin of Shallow Foundation on Weathered Soil Layer According to Design Methods (설계법에 따른 풍화토 지반 얕은기초의 안전여유 비교)

  • Kim, Donggun;Hwang, Huiseok;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.55-64
    • /
    • 2016
  • In this paper bearing capacity and safety margin of shallow foundation on weathered soil ground against shear failure by using current design method of allowable stress design (ASD), load resistance factor design (LRFD) based on reliability analysis and partial safety factor design (PSFD) in Eurocode were estimated and compared to each other. Results of the plate loading test used in construction and design were collected and analysis of probability statistics on soil parameters affecting the bearing capacity of shallow foundation was performed to quantify the uncertainty of them and to investigate the resistance bias factor and covalence of ultimate bearing capacity. For the typical sections of shallow foundation in domestic field as examples, reliability index was obtained by reliability analysis (FORM) and the sensitivity analysis on soil parameters of probability variables was performed to investigate the effect of probability variable on shear failure. From stability analysis for these sections by ASD, LRFD with the target reiability index corresponding to the safety factor used in ASD and PSDF, safety margins were estimated respectively and compared.

Seismic assessment and retrofitting of existing structure based on nonlinear static analysis

  • Ni, Pengpeng
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.631-644
    • /
    • 2014
  • Seismic assessment and retrofitting of existing structure is a complicated work that typically requires more sophisticated analyses than performing a new design. Before the implementation of a Code for seismic design of buildings (GBJ 11-89), not enough attention has been paid on seismic performance of structures and a great part of the existing reinforced concrete structures built in China have been poorly designed according to the new version of the same code (GB 50011-2010). This paper presents a case study of seismic assessment of a non-seismically designed reinforced concrete building in China. The structural responses are evaluated using the nonlinear static procedure (the so-called pushover analysis), which requires its introduction within a process that allows the estimation of the demand, against which the capacity is then compared with. The capacity of all structural members can be determined following the design code. Based on the structural performance, suitable retrofitting strategies are selected and implemented to the existing system. The retrofitted structure is analyzed again to check the effectiveness of the rehabilitation. Different types of retrofitting strategy are discussed and classified according to their complexity and benefits. Finally, a proper intervention methodology is utilized to upgrade this typical low-rise non-ductile building.

Performance Analysis of Gas Turbine for Large-Scale IGCC Power Plant

  • Joo, Yong-Jin;Kim, Mi-Yeong;Park, Se-Ik;Seo, Dong-Kyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.415-419
    • /
    • 2016
  • As the need for clean coal technology has grown, so has the global research and development efforts into integrated gasification combined cycle (IGCC) plants. An IGCC plant couples a gas turbine to a gasification block. Various technical and economic problems exist in designing such a system. One such problem is the difficulty in realizing economies of scale because the single-train flow capacity of commercial IGCC synthetic gas turbine plants is limited; the capacity does not exceed a net power rating of 300 MW. To address this problem, this study modeled and simulated a synthetic gas turbine with the goal of evaluating the feasibility of a 500 MW or larger IGCC plant. First, a gas turbine with the best output and efficiency was chosen for use with natural gas. The turbine was modeled using GateCycle (a simulation tool), and the integrity of the model validated by comparing the result to the design value. Next, off-design modeling was carried out for a gas turbine with synthetic gas based on its on-design model, and the result was compared with the study result of the gas turbine manufacturer. The simulation confirmed that it is possible to create a large capacity IGCC plant by undertaking the remodeling of a gas turbine designed to use natural gas into one suitable for synthetic gas.

Performance Characteristics and Improvement Suggestion of Individual Sewage Treatment in Kyangan Watershed (경안천 유역 소규모 오수처리시설의 처리특성 및 효율개선방안)

  • Jang, Young-ho;Kim, Keug Tae;Jahng, Deok-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.816-821
    • /
    • 2010
  • It has been achieved 109.1 kg/d of BOD reduction that is equivalent to the amount of BOD loading discharged from 21,880 persons and dramatic decrease of the fallout ratio against water quality of effluent, from 42% to 9%, through technical support on ISTPs to be applied by the ISMSGA at the upper area of Geongan river in Yong-In city. It was clearly revealed that the most efficient configuration for ISTP was a series of anaerobic tank, equalization basin, aerobic tank, sedimentation tank, and then effluent tank. Also, the major causes on the fallout ratio of ISTP resulted in the lack of management (67.5%) and imperfect facilities (32.5%). Then, when compared the quantity of water supply with the design capacity of ISTP, the design capacity was estimated as 1.8 or 2.4 folds larger than the real quantity of water supply so that it is essential to punctually consider the key factors such as an estimation methods, the specificity of commission operator and construction by high systematic technologies to improve the water quality for the future.

Study on the bearing capacity of cold-formed steel under different boundary conditions in transmission towers

  • Han, Junke;Zhao, Xu;Tang, Zhenyun;Ma, Hua;Li, Zhenbao
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.665-672
    • /
    • 2017
  • Cold-formed steel is widely used in steel structures, especially in transmission towers, because of advantages such as low weight, high strength, excellent mechanical properties, etc. However, there is not a special design code for cold-formed steel use in transmission towers in China. For this study, a total of 105 compression members were tested statically to investigate the bearing capacity of cold-formed steel members under different boundary conditions in transmission towers. The test results were compared to the results predicted by the current design codes. For deeper insight, additional coupled members were simulated using finite element analysis. An improved design method was developed based on the experimental and analytical results.

Performance of a 2 Room Multi-Heat Pump with a Constant Speed Compressor

  • Kwan Young Chul;Kwon Jeong-Tae;Jeong Ji Hwan;Lee Sang Jae;Kim Dae Hun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.4
    • /
    • pp.184-191
    • /
    • 2004
  • In order to improve the performance of a 2 room heat pump with a constant speed compressor, the optimum refrigeration circuit of the heat pump with different cooling and heating capacities is developed by applying capillary tubes. The refrigeration circuit is composed of four parts; a heating circuit, a cooling circuit, a by-pass circuit and a balance circuit. The performance of the 2 room heat pump are investigated from a rating experiment and a reliability experiment, using the calorimeter. Results of the rating experiment show that the capacity of heat pump is about $93\%$ of the design value. In particular, the capacity of the cooling single operation is about $13\%$ higher than the design value, and the capacity of the heating multi operation is about $5\%$ higher than the design value. From the reliability experi-ment, it is found that the lowest driving voltage of the compressor is about $75\%$ of the rating voltage. Also the compressor is reoperated normally under the flood back and the over load.

Hydroelastic response of 19,000 TEU class ultra large container ship with novel mobile deckhouse for maximizing cargo capacity

  • Im, Hong-Il;Vladimir, Nikola;Malenica, Sime;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • This paper is related to structural design evaluation of 19,000 TEU ultra large container ship, dealing with hydroelastic response, i.e. springing and whipping. It illustrates application of direct calculation tools and methodologies to both fatigue and ultimate strength assessment, simultaneously taking into account ship motions and her elastic deformations. Methodology for springing and whipping assessment within so called WhiSp notation is elaborated in details, and in order to evaluate innovative container ship design with increased loading capacity, a series of independent hydroelastic computations for container ship with mobile deckhouse and conventional one are performed with the same calculation setup. Fully coupled 3D FEM - 3D BEM model is applied, while the ultimate bending capacity of hull girder is determined by means of MARS software. Beside comparative analysis of representative quantities for considered ships, relative influence of hydroelasticity on ship response is addressed.

Optimal Design of Batch-Storage Network (회분식 공정-저장조 그물망 구조의 최적설계)

  • 이경범;이의수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.802-810
    • /
    • 1998
  • The purpose of this study is to find the analytic solution of determining the optimal capacity of processes and storages to meet the product demand. Recent trend to reduce product delivery time and to provide high quality product to customer requires the increasing capacity of storage facilities. However, the cost of constructing and operating storage facilities is becoming substantial because of increasing land value, environmental and safety concern. Therefore, reasonable decision making about the capacity of processes and storages is important subject for industries. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ(Economic Order Quantity) model, trimmed with practical experience but the unrealistic assumption of EOQ model is not suitable for the chemical plant design with highly interlinked processes and storages. This study, a first systematic attempt for this subject, clearly overcomes the limitation of classical lot sizing method. The superstructure of the plant consists of the network of serially and/or parallelly interlinked processes and storages. A novel production and inventory analysis method, PSW(Periodic Square Wave) model, is applied. The objective function of optimization is minimizing the total cost composed of setup and inventory holding cost. The advantage of PSW model comes from the fact that the model provide a set of simple analytic solution in spite of realistic description of material flow between process and storage. The resulting simple analytic solution can greatly enhance the proper and quick investment decision for the preliminary plant design confronting diverse economic situation.

  • PDF

Load Rating of Bridges and Load Test of Agricultural Slab Bridge (교량의 내하력 평가 및 농로교의 하중시험)

  • Yang, Seung-Ie;Kim, Han-Joong;Kim, Jin-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.239-249
    • /
    • 2003
  • The bridges, which were built between 20 and 30 years ago in rural area, have to support unexpected overload caused by excessive amount of transportation. For these rural bridges, repairs and replacements are needed. To avoid the high cost of rehabilitation, the bridge rating must correctly report the present load-carrying capacity. Rating engineers use Allowable Stress Design (ASD), Load Factor Design (LFD), and Load Resistance Factor Design (LRFD) to evaluate the bridge load carrying capacity. In this paper, the load rating methods are introduced, and it is illustrated how to use the load test data from literature survey. Load test is conducted to the bridge that was built 30 years ago in rural area. From load test results, new maintenance strategy is suggested instead of the bridge replacement.

Research on rotation capacity of the new precast concrete assemble beam-column joints

  • Han, Chun;Li, Qingning;Wang, Xin;Jiang, Weishan;Li, Wei
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.613-625
    • /
    • 2016
  • The joints of the new prefabricated concrete assemble beam-column joints are put together by the hybrid joints of inserting steel under post-tensioned and non-prestressed force and both beams and columns adopt prefabricated components. The low cyclic loading test has been performed on seven test specimens of beam-column joints. Based on the experimental result, the rotation capacity of the joints is studied and the $M-{\theta}$ relation curve is obtained. According to Eurocode 3: Design of steel structures and based on the initial rotational stiffness, the joints are divided into three types; by equivalent bending-resistant stiffness to the precast beam, the equivalent modulus of elasticity $E_e$ is elicited with the superposition method; the beam length is figured out that satisfies the rigid joints and after meeting the requirements of application and safety, the new prefabricated concrete assemble beam-column joints can be regarded as the rigid joints; the design formula adopted by the standard of concrete joint classification is theoretically derived, thereby providing a theoretical basis for the new prefabricated concrete structure.