• Title/Summary/Keyword: Capacity Design

Search Result 5,647, Processing Time 0.03 seconds

Design of Active Mass Damper to Improve Seismic Performance Using Capacity Spectrum Method (내진성능 향상을 위한 능력스펙트럼법에 의한 능동제어기 설계)

  • 김형섭;민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.259-266
    • /
    • 2003
  • This paper begins with the seismic performance evaluation of an existing building, which exhibits the need of additional damping to reduce its response. Required damping ratio is found by capacity spectrum method to satisfy a target response. It is expressed with the design parameter of active mass damper by adopting Linear Quadratic Regulator, Optimal gains are obtained and then weighting matrices are found. Finally the seismic performance by added active mass damper is demonstrated, which satisfies the target response.

  • PDF

Design of A Quality System for Multi-Products with the Fixed Costs for Products Servicing (서비스 고정비용을 고려한 복수제품 품질시스템의 설계)

  • Kim Sung Chul
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.4
    • /
    • pp.61-72
    • /
    • 2004
  • In this paper, we design sampling inspections and service capacities simultaneously for multi-products. Particularly, we extend Kim(2003) by introducing the fixed cost of providing services. We show that, due to the fixed cost considered, the cost function of a product is no longer linear or convex in terms of the level of service provision, and the total inspection is prefered to the small level of service capacity which results in high burden of the fixed cost. And we develop a simple framework to deal with this joint design problem for a product. Also we consider the problem of allocating the given number of the total service capacities among products. A dynamic programming algorithm is developed to determine the optimal allocation which minimizes the overall total cost of the system and the optimal allocation can be obtained with the considerably smaller computations than the total number of possible allocations. The results can be used to support planning decisions and to aid the joint design of inspections and service capacities for products.

Optimal Design of PSC-I Girder Bridge Considering Life Cycle Cost (생애주기비용을 고려한 PSC-I형 교량의 최적설계)

  • Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the procedure for the optimal design of a PSC-I girder bridge considering life cycle cost (LCC). The load carrying capacity curves for the concrete deck, PSC-I girder and $\pi$-type pier were derived and used for the estimate of service lives. Total life cycle cost for the service life was calculated as sum of initial cost, damage cost, maintenance cost, repair and rehabilitation cost, user cost, and disposal cost. The advanced First Order Second Moment method was used to estimate the damage cost. The optimization method was applied to the design of PSC-I girder bridge. The objective function was set to the annual cost, which is defined by dividing the total life cycle cost by the service life, and constraints were formulated on the basis of Korean Standards. The optimal design was performed for various service lives and the effects of design factors were investigated.

The Effect of Design Parameters on the Energy Efficiency of a TEM Refrigerator (열전모듈 냉장고의 에너지 효율에 미치는 설계인자의 영향)

  • Lee, Tae-Hee;Kim, Jin-Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.3
    • /
    • pp.29-34
    • /
    • 2018
  • To present the design direction of the thermoelectric module (TEM) refrigerator, analysis of the effect of the design parameters on the energy efficiency and performance of the refrigerator is performed. The design parameters considered are the cooling capacity of the TEM and the heat transfer performance of the heating and cooling surface of the TEM. The heat transfer performance is the most effective design parameter for improving cooling power. The smaller ΔT and cooling capacity of the TEM make the higher efficiency of the refrigerator.

Elastic Seismic Design of Steel Highrise Buildings in Regions of Moderate Seismicity (중진대 철골조 초고층 건물의 탄성내진설계)

  • Lee Cheol-Ho;Kim Seon-Woong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.741-748
    • /
    • 2006
  • Seismic performance evaluation was conducted for four wind-designed concentrically braced steel highrise buildings in order to check the feasibility of designing steel highrise buildings per elastic seismic design criterion (or strength and stiffness solution) in the regions of strong wind and moderate seismicity. The pushover analysis results revealed that the wind-designed highrise buildings possess significantly increased elastic seismic capacity due to the overstrength resulting from the wind serviceability criterion. The strength demand-to-capacity study showed that, due to the wind-induced overstrength, highrise buildings with a slenderness ratio of larger than four or five can withstand elastically even the maximum considered earthquake at the performance level of immediate occupancy. Based on the analytical results of this study, practical elastic seismic design procedure for steel highrise buildings in the regions of moderate seismicity is proposed.

  • PDF

The Crush Energy Absorption Capacity Optimization for the Side-Member of an Aluminum Space Frame Vehicle (알루미늄 차체의 사이드멤버 충돌에너지 흡수성능 최적설계)

  • 김정호;김범진;허승진;김민수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.94-100
    • /
    • 2004
  • In order to improve the frontal crash performance of an Aluminum Space Frame Vehicle, this presents a systematic optimal design process to maximize the crush energy absorption capacity of side-members while satisfying the maximum displacement constraint. In this study, five design types are studied for selecting a good collapse initiator. Then, for the selected collapse initiator type, 7 design variables are defined to represent cross section shape, thickness and bead interval. The systematic optimization processor, R-INOPL uses DOE, RSM and numerical optimization techniques. R-INOPL uses only 14 analyses to solve the 7 design variable optimization problem the final design can improve 103.9% of the internal energy and reduce 13.9% of the maximum displacement.

Exploring market uncertainty in early ship design

  • Zwaginga, Jesper;Stroo, Ko;Kana, Austin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.352-366
    • /
    • 2021
  • To decrease Europe's harmful emissions, the European Union aims to substantially increase its offshore wind energy capacity. To further develop offshore wind energy, investment in ever-larger construction vessels is necessary. However, this market is characterised by seemingly unpredictable growth of market demand, turbine capacity and distance from shore. Currently it is difficult to deal with such market uncertainty within the ship design process. This research aims to develop a method that is able to deal with market uncertainty in early ship design by increasing knowledge when design freedom is still high. The method uses uncertainty modelling prior to the requirement definition stage by performing global research into the market, and during the concept design stage by iteratively co-evolving the vessel design and business case in parallel. The method consists of three parts; simulating an expected market from data, modelling multiple vessel designs, and an uncertainty model that evaluates the performance of the vessels in the market. The case study into offshore wind foundation installation vessels showed that the method can provide valuable insight into the effect of ship parameters like main dimensions, crane size and ship speed on the performance in an uncertain market. These results were used to create a value robust design, which is capable of handling uncertainty without changes to the vessel. The developed method thus provides a way to deal with market uncertainty in the early ship design process.

A Study on Riding Capacity of Railway Vehicles for Military Passengers (철도 객차별 군 인원 탑승능력 판단 연구)

  • Oh, Sukmun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.129-136
    • /
    • 2017
  • This paper aims to establish a guideline for ridership capacity of different rail vehicles for military passengers. Previous guideline is limited only to a Mungungwha(hauled by diesel locomotive) vehicle, but this paper expands the limitation to ITX- Saemaeul and urban rail vehicles classified to Electric Motivated Unit(EMU). The guideline considers both with and without personal armor conditions, and based on repetitive ridership experiments. The experiments are designed under considerations of the required number of soldiers for the sample spaces of the different rail vehicles. Moreover, the design tries to establish a concept of optimal capacity additionally to a traditional limiting ridership capacity. In order to do this, ridership comfort is questioned to participant soldiers repetitively over the experiments and all answers of them are surveyed as a results of it. The results of the experiments presented by this paper can be referenced to establish a new guideline on ridership capacity for Korean army.

Bearing capacity of micropiled-raft system

  • Hwang, Tae-Hyun;Kim, Kang-Hyun;Shin, Jong-Ho
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.417-428
    • /
    • 2017
  • The micropile has been mainly used under the concept of supplementing structural support or reinforcing soft ground. For the micropiled-raft system which uses a micropile and a raft in combination in particular, it is generally considered as ground reinforcement rather than foundation components considering the bearing capacity of the micropile in many cases. In this study, the bearing capacity mechanism of the micropiled-raft system is investigated through a physical model test and numerical method. The numerical results have shown that not only the slender-pile-effect of the micropile, but also the ground reinforcement effect, increase the bearing capacity considerably. The bearing capacity formula of the micropiled-raft system is derived based on the failure mechanism obtained through model tests. The formula is verified and proposed as a design chart.

A Study on Improvement of Capacity Payment using Fuzzy Theory in CBP Market (퍼지이론을 활용한 변동비 반영 전력시장의 용량요금 개선방안에 관한 연구)

  • Kim, Jong-Hyuk;Kim, Bal-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1087-1092
    • /
    • 2009
  • This paper presents a method for improvement of capacity payment in CBP(cost based pool) market. Capacity payments have been used as common mechanisms in various pools for compensating generators recognized to serve a for reliability purpose. Ideal pricing for capacity reserves by definition achieves a balance between economic efficiency and investment incentives. That is, prices must be kept close to costs, but not so low as to discourage investment. However, the price set is not easy. This paper concludes with market design recommendations that apply fuzzy theory for improvement of capacity payment. Following this model, market participants decided on their own based on their forecast to the market demand and the payment for it.