• Title/Summary/Keyword: Capacity Constraints

Search Result 405, Processing Time 0.025 seconds

Fault Tolerant Homopolar Magnetic Bearings with Flux Coupling (자기연성을 이용한 동극형 자기베어링의 고장강건 제어)

  • Na, Uhn-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.83-92
    • /
    • 2008
  • This paper develops the theory for a fault-tolerant, permanent magnet biased, homopolar magnetic bearing. If some of the coils or power amplifiers suddenly fail, the remaining coil currents change via a novel distribution matrix such that the same magnetic forces are maintained before and after failure. Lagrange multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrix that maximizes the load capacity of the failed bearing. Some numerical examples of distribution matrices are provided to illustrate the theory. Simulations show that very much the same dynamic responses (orbits or displacements) are maintained throughout failure events (up to any combination of 3 coils failed for the 6 pole magnetic bearing) while currents and fluxes change significantly. The overall load capacity of the bearing actuator is reduced as coils fail. The same magnetic forces are then preserved up to the load capacity of the failed.

Variance Analysis for State Estimation In Communication Channel with Finite Bandwidth (유한한 대역폭을 가지는 통신 채널에서의 상태 추정값에 대한 분산 해석)

  • Fang, Tae-Hyun;Choi, Jae-Weon
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.693-698
    • /
    • 2000
  • Aspects of classical information theory, such as rate distortion theory, investigate how to encode and decode information from an independently identically distributed source so that the asymptotic distortion rate between the source and its quantized representation is minimized. However, in most natural dynamics, the source state is highly corrupted by disturbances, and the measurement contains the noise. In recent coder-estimator sequence is developed for state estimation problem based on observations transmitted with finite communication capacity constraints. Unlike classical estimation problems where the observation is a continuous process corrupted by additive noises, the condition is that the observations must be coded and transmitted over a digital communication channel with finite capacity. However, coder-estimator sequence does not provide such a quantitative analysis as a variance for estimation error. In this paper, under the assumption that the estimation error is Gaussian distribution, a variance for coder-estimation sequence is proposed and its fitness is evaluated through simulations with a simple example.

  • PDF

Genetic Algorithm Based Design of Beep Groove Ball Bearing for High-Load Capacity (유전자 알고리즘을 이용한 깊은 홈 볼 베어링의 고부하용량 설계)

  • 윤기찬;조영석;최동훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.167-173
    • /
    • 1999
  • This paper suggests a method to design the deep groove ball bearing for high-load capacity by using a genetic algorithm. The design problem of ball bearings is a typical discrete/continuous optimization problem because the deep groove ball bearing has discrete variables, such as ball size and number of balls. Thus, a genetic algorithm is employed to find the optimum values from a set of discrete design variables. The ranking process is proposed to effectively deal with the constraints in genetic algorithm. Results obtained fer several 63 series deep groove ball bearings demonstrated the effectiveness of the proposed design methodology by showing that the average basic dynamic capacities of optimally designed bearings increase about 9~34% compared with the standard ones.

  • PDF

Performance Management of Token Bus Networks for Computer Integrated Manufacturing (컴퓨터 통합생산을 위한 토큰버스 네트워크의 성능관리)

  • Lee, Sang-Ho;Lee, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.152-160
    • /
    • 1996
  • This paper focuses on development and evaluation of a performance management algorithm for IEEE 802.4 token bus networks to serve large-scale integrated manufacturing systems. Such factory automation networks have to satisfy delay constraints imposed on time-critical messages while maintaining as much network capacity as possible for non-time-critical messages. This paper presents a network performance manager that adjusts queue capacity as well as timers by using a set of fuzzy rules and fuzzy inference mechanism. The efficacy of the performance management has been demonstrated by a series of simulation experiments.

  • PDF

A Study on the Optimal Power Flow with Suppressing the Short Circuit Capacity in Power Systems (전력계통의 고장용량 억제를 위한 최적조류계산 연구)

  • Lee, Gwang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.12
    • /
    • pp.575-580
    • /
    • 2000
  • Switching of the transmission lines(T/L) is one of the ways for suppressing the short circuit capacity. This paper presents the extended optimal power flow(OPF) to the problem of selecting the T/Ls to be open. The constraints of the short circuit currents within limits are added to the inequalities of OPF. Also, the overload on the other lines due to switching of T/Ls is avoided by the linearized inequalities. The number of the open lines can be minimized by incorporating into the objective function of OPF in order to maintain reliability. The method of an effective calculation of the extended OPF is also proposed in this paper, which makes the two parts decoupled. The one concerning the generation dispatch is solved in the first place by the conventional method. Secondly, the other concerning the line-switching is optimized by the proposed formulation.

  • PDF

Study on the Calculation of the Optimal Power System Operation Considering Line Contingencies and Line Capacities (선로사고 및 선로용량을 고려한 전력계통 최적운영에 관한 연구)

  • 박영문;백영식;서보혁;신중린
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.9
    • /
    • pp.609-615
    • /
    • 1987
  • The optimal operation of power system is developed by alternately using real power dispatch and reactive power dispatch problem. The real power system scheduling process is formulated as an optimization problem with linear inequality constraints. A.C. loadflow method is used for the problem solution and line losses are considered. The constraints under consideration are generator power limits, load scehdling limits and line capacity limits. In solving the objective function the Dual Relaxation method is adopted. Tests indicate that the method is practical for real time application. The reactive power control problem uses the Dual Simplex Relaxation method as in the real scheduling case. Insted of minimizing the cost of power system, the objective is selected as to determine the highest possible voltage schedule. The constraints under consideration are the voltage limits at each node and the possibilities of supply or absobtion of reactive energy by generator units and the compensation facilities. Tests indicate that the method is practical for real time applications. The overall optimization methods developed in this paper proved to obtained fine results in minimizing object function compared with the method without using voltage control. And the overall voltage profiles were also improved.

  • PDF

QoSCM: QoS-aware Coded Multicast Approach for Wireless Networks

  • Mohajer, Amin;Barari, Morteza;Zarrabi, Houman
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5191-5211
    • /
    • 2016
  • It is essential to satisfy class-specific QoS constraints to provide broadband services for new generation networks. The present study proposes a QoS-driven multicast scheme for wireless networks in which the transmission rate and end-to-end delay are assumed to be bounded during a multiple multicast session. A distributed algorithm was used to identify a cost-efficient sub-graph between the source and destination which can satisfy QoS constraints of a multicast session. The model was then modified as to be applied for wireless networks in which satisfying interference constraints is the main challenge. A discrete power control scheme was also applied for the QoS-aware multicast model to accommodate the effect of transmission power level based on link capacity requirements. We also proposed random power allocation (RPA) and gradient power allocation (GPA) algorithms to efficient resource distribution each of which has different time complexity and optimality levels. Experimental results confirm that the proposed power allocation techniques decrease the number of unavailable links between intermediate nodes in the sub-graph and considerably increase the chance of finding an optimal solution.

Dynamic Survivable Routing for Shared Segment Protection

  • Tapolcai, Janos;Ho, Pin-Han
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.198-209
    • /
    • 2007
  • This paper provides a thorough study on shared segment protection (SSP) for mesh communication networks in the complete routing information scenario, where the integer linear program (ILP) in [1] is extended such that the following two constraints are well addressed: (a) The restoration time constraint for each connection request, and (b) the switching/merging capacity constraint at each node. A novel approach, called SSP algorithm, is developed to reduce the extremely high computation complexity in solving the ILP formulation. Basically, our approach is to derive a good approximation on the parameters in the ILP by referring to the result of solving the corresponding shared path protection (SPP) problem. Thus, the design space can be significantly reduced by eliminating some edges in the graphs. We will show in the simulation that with our approach, the optimality can be achieved in most of the cases. To verify the proposed formulation and investigate the performance impairment in terms of average cost and success rate by the additional two constraints, extensive simulation work has been conducted on three network topologies, in which SPP and shared link protection (SLP) are implemented for comparison. We will demonstrate that the proposed SSP algorithm can effectively and efficiently solve the survivable routing problem with constraints on restoration time and switching/merging capability of each node. The comparison among the three protection types further verifies that SSP can yield significant advantages over SPP and SLP without taking much computation time.

Effect Analysis of User-Multiplexing on Delay QoS Performance in Low-Power Wireless Communication Systems (저전력 무선통신 시스템에서 사용자 다중화가 지연 QoS 성능에 미치는 영향 분석)

  • Ahn, Seong-Woo;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.69-76
    • /
    • 2011
  • In this paper, we present the analytic model to quantify the system capacity with delay Quality of Service (QoS) constraints, and analyze the effect of user-multiplexing on the delay QoS performance in multiuser low-power wireless communication systems. For this purpose, we define the degree of multiplexing as the number of scheduled users to be served in a frame, and investigate the effect of degree of multiplexing (DoM) on the trade-off of throughput and delay QoS constraints. Through this analysis, we characterize the optimal DoM maximizing the energy efficiency in low-power communication environments. Finally, through the simulation results, we verify that our approach with its optimal DoM yields substantial capacity gain.

Optimal Capacity Determination of BESS for Customer using Investment Cost and Electric Cost (투자비용과 전기요금을 반영한 수용가 BESS의 최적용량 산정)

  • Park, Jin-Kyung;Baek, Young-Sik;Jeong, Ki-Seok;Park, Ji-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.208-213
    • /
    • 2015
  • This study presents the estimation method for the optimal capacity of BESS(Battery Energy Storage System) in order to reduce the electric charges of common consumer. The daily optimal charge and discharge plan of BESS which satisfies the given constraints is established using linear programming through the change of rated output/rated capacity of the time that shows the electric charges in the highest reduced rate has been selected. There will be a problem to compare only reduced rate because the bigger the rated capacity, the more reduced rate is increased. Therefore, rated output/rated capacity of the time when the reduced amount of electric charges for a year is higher than the investment cost of BESS was selected.