• 제목/요약/키워드: Capacity Constraints

검색결과 403건 처리시간 0.035초

Towards Achieving the Maximum Capacity in Large Mobile Wireless Networks under Delay Constraints

  • Lin, Xiaojun;Shroff, Ness B.
    • Journal of Communications and Networks
    • /
    • 제6권4호
    • /
    • pp.352-361
    • /
    • 2004
  • In this paper, we study how to achieve the maximum capacity under delay constraints for large mobile wireless networks. We develop a systematic methodology for studying this problem in the asymptotic region when the number of nodes n in the network is large. We first identify a number of key parameters for a large class of scheduling schemes, and investigate the inherent tradeoffs among the capacity, the delay, and these scheduling parameters. Based on these inherent tradeoffs, we are able to compute the upper bound on the maximum per-node capacity of a large mobile wireless network under given delay constraints. Further, in the process of proving the upper bound, we are able to identify the optimal values of the key scheduling parameters. Knowing these optimal values, we can then develop scheduling schemes that achieve the upper bound up to some logarithmic factor, which suggests that our upper bound is fairly tight. We have applied this methodology to both the i.i.d. mobility model and the random way-point mobility model. In both cases, our methodology allows us to develop new scheduling schemes that can achieve larger capacity than previous proposals under the same delay constraints. In particular, for the i.i.d. mobility model, our scheme can achieve (n-1/3/log3/2 n) per-node capacity with constant delay. This demonstrates that, under the i.i.d. mobility model, mobility increases the capacity even with constant delays. Our methodology can also be extended to incorporate additional scheduling constraints.

다자게임에서 발전력제약이 복합전략 내쉬균형에 미치는 영향 (Effect of Generation Capacity Constraints on a Mixed Strategy Nash Equilibrium in a Multi-Player Game)

  • 이광호
    • 전기학회논문지
    • /
    • 제57권1호
    • /
    • pp.34-39
    • /
    • 2008
  • Nash Equilibrium(NE) is essential to investigate a participant's bidding strategy in a competitive electricity market. Congestion on a transmission line makes it difficult to compute the NE due to causing a mixed strategy. In order to compute the NE of a multi-player game, some heuristics are proposed with concepts of a key player and power transfer distribution factor in other studies. However, generation capacity constraints are not considered and make it more difficult to compute the NE in the heuristics approach. This paper addresses an effect of generation capacity limits on the NE, and suggest a solution technique for the mixed strategy NE including generation capacity constraints as two heuristic rules. It is reported in this paper that a role of the key player who controls congestion in a NE can be transferred to other player depending on the generation capacity of the key player. The suggested heuristic rules are verified to compute the mixed strategy NE with a consideration of generation capacity constraints, and the effect of the generation constraints on the mixed strategy NE is analyzed in simulations of IEEE 30 bus systems.

배전계통에서의 최적 부하절체를 위한 전문가 시스템 (An Expert System for Optimal Load Transfer in Distribution Systems)

  • 문영현;최병윤;김세호
    • 대한전기학회논문지
    • /
    • 제39권9호
    • /
    • pp.903-911
    • /
    • 1990
  • When load areas on a feeder are deenergized due to faults and scheduled outage, operators need to identify neighboring feeders, try to restore customers and minimize out-of-service areas. These cases include knowledge of system states and various constraints such as voltage drop. This paper concerns the load transfer in fault restoration and scheduled outage. Also, the operating constraints such as line current capacity, relay trip current, transformer capacity, voltage drop and line loss are considered. This expert system can propose the optimal load transfer method by analyzing the system state and considering the constraints.

  • PDF

설비용량을 고려한 계층적 네트워크의 설계 및 분석 (Designing hierarchical ring-star networks under node capacity constraints)

  • 이창호;윤종화;정한욱
    • 한국경영과학회지
    • /
    • 제19권1호
    • /
    • pp.69-83
    • /
    • 1994
  • This paper deals with a capacitated ring-star network design problem (CRSNDP) with node capacity constraints. The CRSNDP is formulated as a mixed 0-1 integer problem, and a 2-phase heuristic solution procedure, ADD & VAM and RING, is developed, in which the CRSNDP is decomposed into two subproblems : the capacitated facility location problem (CFLP) and the traveling sales man problem (TSP). To solve the CFLP in phase I the ADD & VAM procedure selects hub nodes and their appropriate capacity from a candidate set and then assigns them user nodes under node capacity constraints. In phase II the RING procedure solves the TSP to interconnect the selected hubs to form a ring. Finally a solution of the CRSNDP can be achieved through combining two solution of phase I & II, thus a final design of the capacitated ring-star network is determined. The analysis of computational results on various random problems has shown that the 2-phase heuristic procedure produces a solution very fast even with large-scale problems.

  • PDF

Circuit-Switched “Network Capacity” under QoS Constraints

  • Wieselthier, Jeffrey E.;Nguyen, Gam D.;Ephremides, Anthony
    • Journal of Communications and Networks
    • /
    • 제4권3호
    • /
    • pp.230-245
    • /
    • 2002
  • Usually the network-throughput maximization problem for constant-bit-rate (CBR) circuit-switched traffic is posed for a fixed offered load profile. Then choices of routes and of admission control policies are sought to achieve maximum throughput (usually under QoS constraints). However, similarly to the notion of channel “capacity,” it is also of interest to determine the “network capacity;” i.e., for a given network we would like to know the maximum throughput it can deliver (again subject to specified QoS constraints) if the appropriate traffic load is supplied. Thus, in addition to determining routes and admission controls, we would like to specify the vector of offered loads between each source/destination pair that “achieves capacity.” Since the combined problem of choosing all three parameters (i.e., offered load, admission control, and routing) is too complex to address, we consider here only the optimal determination of offered load for given routing and admission control policies. We provide an off-line algorithm, which is based on Lagrangian techniques that perform robustly in this rigorously formulated nonlinear optimization problem with nonlinear constraints. We demonstrate that significant improvement is obtained, as compared with simple uniform loading schemes, and that fairness mechanisms can be incorporated with little loss in overall throughput.

A Two-Stage Heuristic for Disassembly Scheduling with Capacity Constraints

  • Jeon Hyong-Bae;Kim Jun-Gyu;Kim Hwa-Joong;Lee Dong-Ho
    • Management Science and Financial Engineering
    • /
    • 제12권1호
    • /
    • pp.95-112
    • /
    • 2006
  • Disassembly scheduling is the problem of determining the quantity and timing of disassembling used or end-of-life products while satisfying the demand of their parts and/or components over a planning horizon. The case of assembly product structure is considered while the resource capacity constraints are explicitly considered. A cost-based objective is considered that minimizes the sum of disassembly operation and inventory holding costs. The problem is formulated as an integer programming model, and a two-stage heuristic with construction and improvement algorithms is suggested in this paper. To test the performance of the heuristic, computational experiments are done on randomly generated problems, and the results show that the heuristic gives near optimal solutions within a very short amount of computation time.

주문 집약을 위한 재고 변용 모델 연구 : 제철산업의 소로트 주문 집약 활용을 중심으로 (A Simulation Study on a Variant Policy of Inventory Replenishment for the Order Consolidation : A Case of Steel Industry)

  • 정재헌
    • 한국경영과학회지
    • /
    • 제31권2호
    • /
    • pp.99-112
    • /
    • 2006
  • In our model, we keep inventory to satisfy uncertain demands which arrives irregularly. In this situation, we have additional two constraints. First, we need to have certain amount of order consolidation (consolidation constraint) for the orders to replenish the inventory because of production or purchase amount constraint. And also, if we order at a certain date which was set by administrative convenience, we have capacity constraint to order the consolidated order demands (capacity constraint). We show this variant inventory policy is needed in steel industry and note that there will be possible similar case in industry. To deal with this case, we invent a variant replenishment policy and show this policy is superior to other possible polices in the consolidation constraint case by extensive simulation. And we derive a combined solution method for dealing with the capacity constraints in addition to the consolidation constraints. For this, we suggest a combined solution method of integer programming and simulation.

시간제약과 하역장 용량제약이 있는 차량경로문제에 대한 타부탐색 알고리즘 (A Tabu Search Algorithm for the Vehicle Routing Problem with Time Window and Dock Capacity Constraints)

  • 장희정;이경식;최은정;박성수
    • 한국경영과학회지
    • /
    • 제30권4호
    • /
    • pp.45-60
    • /
    • 2005
  • We consider a vehicle routing problem with time window and dock capacity constraints (VRPTD). In most traditional models of vehicle routing problems with time window (VRPTW), each customer must be assigned to only one vehicle route. However demand of a customer may exceed the capacity of one vehicle, hence at least two vehicles may need to visit the customer We assume that each customer has Its own dock capacity. Hence, the customer can be served by only a limited number of vehicles simultaneously. Given a depot, customers, their demands, their time windows and dock capacities, VRPTD is to get a set of feasible routes which pass the depot and some customers such that all demands of each customer are satisfied Since VRPTD is NP-hard, a meta-heuristic algorithm is developed. The algorithm consists of two Procedures : the route construction procedure and the route scheduling procedure. We tested the algorithm on a number of instances and computational results are reported.

Performance Analysis of Coordinated Cognitive Radio Networks under Fixed-Rate Traffic with Hard Delay Constraints

  • Castellanos-Lopez, S. Lirio;Cruz-Perez, Felipe A.;Rivero-Angeles, Mario E.;Hernandez-Valdez, Genaro
    • Journal of Communications and Networks
    • /
    • 제16권2호
    • /
    • pp.130-139
    • /
    • 2014
  • Due to the unpredictable nature of channel availability, carrying delay-sensitive traffic in cognitive radio networks (CRNs) is very challenging. Spectrum leasing of radio resources has been proposed in the so called coordinated CRNs to improve the quality of service (QoS) experienced by secondary users (SUs). In this paper, the performance of coordinated CRNs under fixed-rate with hard-delay-constraints traffic is analyzed. For the adequate and fair performance comparison, call admission control strategies with fractional channel reservation to prioritize ongoing secondary calls over new ones are considered. Maximum Erlang capacity is obtained by optimizing the number of reserved channels. Numerical results reveal that system performance strongly depends on the value of the mean secondary service time relative to the mean primary service time. Additionally, numerical results show that, in CRNs without spectrum leasing, there exists a critical utilization factor of the primary resources from which it is not longer possible to guarantee the required QoS of SUs and, therefore, services with hard delay constraints cannot be even supported in CRNs. Thus, spectrum leasing can be essential for CRN operators to provide the QoS demanded by fixed-rate applications with hard delay constraints. Finally, the cost per capacity Erlang as function of both the utilization factor of the primary resources and the maximum allowed number of simultaneously rented channels is evaluated.

제약조건을 고려한 경제급전 제어를 위한 다단계 최적조류계산 알고리즘 (A Multi-level Optimal Power Flow Algorithm for Constrained Power Economic Dispatch Control)

  • 송경빈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권9호
    • /
    • pp.424-430
    • /
    • 2001
  • A multi-level optimal power flow(OPF) algorithm has been evolved from a simple two stage optimal Power flow algorithm for constrained power economic dispatch control. In the proposed algorithm, we consider various constraints such as ower balance, generation capacity, transmission line capacity, transmission losses, security equality, and security inequality constraints. The proposed algorithm consists of four stages. At the first stage, we solve the aggregated problem that is the crude classical economic dispatch problem without considering transmission losses. An initial solution is obtained by the aggregation concept in which the solution satisfies the power balance equations and generation capacity constraints. Then, after load flow analysis, the transmission losses of an initial generation setting are matched by the slack bus generator that produces power with the cheapest cost. At the second stage we consider transmission losses. Formulation of the second stage becomes classical economic dispatch problem involving the transmission losses, which are distributed to all generators. Once a feasible solution is obtained from the second stage, transmission capacity and other violations are checked and corrected locally and quickly at the third stage. The fourth stage fine tunes the solution of the third stage to reach a real minimum. The proposed approach speeds up the two stage optimization method to an average gain of 2.99 for IEEE 30, 57, and 118 bus systems and EPRI Scenario systems A through D testings.

  • PDF