• 제목/요약/키워드: Capacitor voltage control

검색결과 628건 처리시간 0.028초

유도 가열용 Half-Bridge 인버터 시스템의 신뢰성 향상 및 최적제어에 관한 연구 (A Study on the Reliability and Optimal Control of Half-Bridge Inverter for Induction Beating System)

  • 유상봉
    • 기술사
    • /
    • 제33권1호
    • /
    • pp.94-105
    • /
    • 2000
  • The purpose of this paper is to obtain the improved reliability and optimal control of the half-bridge inverter for induction heating system. Parasitic inductance components within the inverter circuit for induction heating including the loss-less turn-off snubber capacitor considerably affect stable operation and noise level of the system. This paper analyzes the effect of the inductance in detail and presents a new snubber configuration suitable for the half-bridge inverter to effectively reduce it. In the half-bridge inverter for induction heating the capacity of the loss-less snubber capacitor determines the switching losses because the zero voltage turn-on switching is used. However, the increase of the capacitor is limited by the system specifications, so that it is not easy work to reduce the switching loss. To effectively overcome the limitation, this paper introduces an active auxiliary resonant circuit suitable for the half-bridge inverter circuit, which operates actively according to the variation of load condition. It is also one of the most important study issues for the half-bridge inverter driven induction heater that the development of optimal control scheme considering varied load condition should be achieved. The control strategy ensures a very stable operation of overall inverter system and zero voltage turn-on switching irrespective of sensitive load parameter variations, in particular, even under the non-magnetic materials.

  • PDF

H-Bridge VSC with a T-Connected Transformer for a 3-Phase 4- Wire Voltage and Frequency Controller of an Isolated Asynchronous Generator

  • Kasal, Gaurav Kumar;Singh, Bhim
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.43-50
    • /
    • 2009
  • This paper deals with a novel solid state controller (NSSC) for an isolated asynchronous generator (IAG) feeding 3-phase 4-wire loads driven by constant power prime movers, such as uncontrolled pico hydro turbines. AC capacitor banks are used to meet the reactive power requirement of the asynchronous generator. The proposed NSSC is realized using a set of IGBTs (Insulated gate bipolar junction transistors) based current controlled 2-leg voltage source converters (CC- VSC) and a DC chopper at its DC bus, which keeps the generated voltage and frequency constant in spite of changes in consumer loads. The neutral point of the load is created using aT-configuration of the transformers. The IAG system is modeled in MATLAB along with Simulink and PSB (power system block set) toolboxes. The simulated results are presented to demonstrate the capability of the isolated generating system consisting of NSSC and IAG driven by uncontrolled pico hydro turbine and feeding 3-phase 4-wire loads.

정상상태에서의 최적전압제어 기법에 관한 연구 (A Study on The Steady State Voltage Control Technique)

  • 원종률;윤용범;윤종수;추진부
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.214-216
    • /
    • 1998
  • This paper presents the analysis on the voltage problems of Korea electric power system and efficient voltage control actions, when contingencies are considered. This analysis is based on the developed voltage' control techniques. It uses the reactive power-voltage nonlinear characteristics. Therefore, efficient voltage control actions can be obtained. Principal control actions of the program are mainly switched shunt capacitor and generator voltage regulating. This is tested on Korea real power system in future year.

  • PDF

3상 인버터의 DC 링크 커패시터 전류의 센서리스 측정 (Sensorless measurement of the DC link capacitor current of three-phase inverter)

  • 수효동;정영국;임영철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 추계학술대회 논문집
    • /
    • pp.205-206
    • /
    • 2012
  • A general method to measure the inverter DC bus capacitor current is described. It is an indirect estimated method. By measuring the input and out voltage and current can calculate DC bus capacitor current. This paper will develope the theory that describes the indirect method. It will discuss and verify the feasibility of this approach through the use of the PSIM. Using SPWM control method will be simulated and compared.

  • PDF

Novel Single-inductor Multistring-independent Dimming LED Driver with Switched-capacitor Control Technique

  • Liang, Guozhuang;Tian, Hanlei
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.1-10
    • /
    • 2019
  • Current imbalance is the main factor affecting the lifespan of light-emitting diode (LED) lighting systems and is generally solved by active or passive approaches. Given many new lighting applications, independent control is particularly important in achieving different levels of luminance. Existing passive and active approaches have their own limitations in current sharing and independent control, which bring new challenges to the design of LED drivers. In this work, a multichannel resonant converter based on switched-capacitor control (SCC) is proposed for solving this challenge. In the resonant network of the upper and lower half-bridges, SCC is used instead of fixed capacitance. Then, the individual current of the LED array is obtained through regulation of the effective capacitance of the SCC under a fixed switching frequency. In this manner, the complexity of the control unit of the circuit and the precision of the multichannel outputs are further improved. Finally, the superior performance of the proposed LED driver is verified by simulations and a 4-channel experimental prototype with a rated output power of 20 W.

A Novel Variable-Speed Renewable-Energy Generation System of Induction Generator and PWM Converter for Small-Scale Hybrid Power Applications

  • Ahmed, Tarek;Nishida, Katsumi;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1339-1342
    • /
    • 2005
  • This paper presents a simple AC-DC power conditioner for a squirell-cage induction generator(IG) operating under variable shaft speeds. The necessary reactive power for the IG system is supplied by means of a capacitor bank and a voltage-source PWM converter. Using a capacitor bank to transfer the reactive power to the IG under the rated speed and no-load conditions starts the IG operation and reduces the PWM power converter size. A simple control compensating for changes in the electrical loads as well as the variation in speed was developed to regulate the voltages of the IG system by controlling the rotor flux through its reactive and active currents control implementation. This proposed power conditioning scheme can be used efficiently as a wind power generation system where the output voltage of the IG is maintained constant voltage despite the variable frequency and the DC bus voltage of the PWM converter can be used for either DC applications such as battery charging or AC power applications with 60/50 Hz by connecting a stand alone inverter. The experimental and simulated operating performance results of a 5 kW IG scheme at various speeds and leads are presented.

  • PDF

스위치 저감형 Z-Source Inverter PWM 제어 (PWM Control of Reduced Switch Z-Source Inverter)

  • 김성환;박태식
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.53-57
    • /
    • 2019
  • 본 논문에서는 스위칭 소자를 줄이기 위한 새로운 Z-소스 인버터의 구조와 PWM 펄스 제어 방법에 대하여 제안하였다. 개선된 Z-소스 인버터는 Z-네트워크가 DC전압과 인버터 사이가 아닌 인버터 뒷단과 접지 사이에 연결되며, 이러한 개선된 Z-소스 인버터는 커패시터 돌입 전류 제한 기능과 커패시터 전압 스트레스가 작은 장점을 가지고 있다. 개선된 Z-소스 인버터에서 스위치를 6개에서 4개로 줄이는 새로운 형태의 스위치 저감형 Z-소스 인버터의 Topology를 제안하고, 제안된 Topology에 적합한 PWM 제어 방법을 개발하였다. 제안된 방법은 PSIM 시뮬레이션을 통해 특성과 성능을 확인하였다.

New Control Method for Power Decoupling of Electrolytic Capacitor-less Photovoltaic Micro-Inverter with Primary Side Regulation

  • Irfan, Mohammad Sameer;Shin, Jong-Hyun;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.677-687
    • /
    • 2018
  • This paper presents a novel power decoupling control scheme with the bidirectional buck-boost converter for primary-side regulation photovoltaic (PV) micro-inverter. With the proposed power decoupling control scheme, small-capacitance film capacitors are used to overcome the life-span and reliability limitations of the large-capacitance electrolytic capacitors. Then, an improved flyback PV inverter is employed in continuous conduction mode with primary-side regulation for the PV power conditioning. The proposed power-decoupling controller shares the reference for primary side current regulation of the flyback PV inverter. The decoupling controller shapes the input current of the bidirectional buck-boost converter. The shared reference eliminates the phase-delay between the input current to the bidirectional buck-boost converter and the double frequency current at the PV primary current. The elimination of the phase-delay in dynamic response enhances the ripple rejection capability of the power decoupling buck-boost converter even with small film capacitor. With proposed power decoupling control scheme, the additional advantage of the primary-side regulation of flyback PV inverter is that there is no need to have an extra current sensor for obtaining the ripplecurrent reference of the decoupling current-controller of the power-decoupling buck-boost converter. Therefore, the proposed power decoupling control scheme is cost-effective as well as the size benefit. A new transient analysis is carried out which includes the source voltage dynamics instead of considering the source voltage as a pure voltage source. For verification of the proposed control scheme, simulation and experimental results are presented.

광역계통 전압/무효전력 관리를 위한 전압관리시스템의 개발 및 현장설치 (Development and Installation of Voltage Management System for Voltage and Reactive Power Control of Wide Area System)

  • 남수철;신정훈;백승묵;이재걸;문승필;김태균
    • 전기학회논문지
    • /
    • 제59권9호
    • /
    • pp.1540-1548
    • /
    • 2010
  • KEPCO proposes enhanced voltage management system that is a coordinate voltage control system between the hierarchical voltage control system and the slow voltage control system. It has been installing in Jeju island. VMS consists of a master controller, CVC (Continuous Voltage Controller) and DVC (Discrete Voltage Controller). CVC consists of main controller, FDMU (Field Data Measurement Unit) and several RPDs (Reactive Power Dispatcher). CVC has a control scheme with AVRs of generator to maintain the voltage of a pilot bus in a power system, DVC has a control scheme with static reactive power sources, like a shunt capacitor, a shunt reactor, ULTC and so on, to maintain the reactive power reserve of a power system and a master controller is executed to recover reactive power margin of a power system through coordinated control between CVC and DVC.

Crowbar 운전을 가지는 이중여자유도발전기 풍력발전시스템의 제어전략 (Control Strategies of Doubly Fed Induction Generator -Based Wind Turbines with Crowbar Activation)

  • 저스토 잭슨 존;노경수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.706-707
    • /
    • 2011
  • The insertion of the crowbar system in the doubly fed induction generator rotor circuit for a short period of time during grid disturbance enables a more efficient way of limiting transient rotor current and hence protecting the rotor side converter (RSC) and the DC - link capacitor. When crowbar is activated at fault occurrence and clearance time, RSC is blocked while DC -link capacitor and the grid side converter (GSC) can be controlled to provide reactive power support at the PCC and improve the voltage which helps to comply with grid codes. In this paper, control strategies for crowbar system to limit the rotor current during fault is presented with RSC and GSC controllers are modified to control PCC voltage during disturbance to enhance DFIG wind farm to comply with some strict grid codes. Model simulated on MATLAB/Simulink verify the study through simulation results presented.

  • PDF