• 제목/요약/키워드: Capacitor voltage

검색결과 1,824건 처리시간 0.029초

3권선 CCVT의 2차 전압 보상 방법 (Compensation of the Secondary Voltage of a Three Winding Coupling Capacitor Voltage Transformer)

  • 강용철;김연희;정태영;장성일;김용균
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.938-943
    • /
    • 2008
  • Coupling capacitor voltage transformers(CCVTs) have been used in extra or ultra high voltage systems to obtain the standard low voltage signal for protection and measurement. For fast suppression of the phenomenon of ferroresonance, three winding CCVTs are used instead of two winding CCVTs. A tuning reactor is connected between a capacitor voltage divider and a voltage transformer to reduce the phase angle difference between the primary and secondary voltages in the steady state. Slight distortion of the secondary voltage is generated when no fault occurs. However, when a fault occurs, the secondary voltage of the CCVT has significant errors due to the transient components such as dc offset component and/or high frequency components resulting from the fault. This paper proposes an algorithm for compensating the secondary voltage of a three winding CCVT in the time domain. With the values of the measured secondary voltage of the three winding CCVT, the secondary, tertiary and primary currents and voltages are estimated; then the voltages across the capacitor and the tuning reactor are calculated and then added to the measured voltage. Test results indicate that the algorithm can successfully compensate the distorted secondary voltage of the three winding CCVT irrespective of the fault distance, the fault impedance and the fault inception angle as well as in the steady state.

에너지저장 커패시터의 최적 충전을 위한 직렬공진형 컨버터의 운용 모드 비교 (Comparative Analysis of Charging Modes of Series Resonant Converter for an Energy Storage Capacitor)

  • 이병하;강태섭;차한주
    • 전기학회논문지
    • /
    • 제61권3호
    • /
    • pp.394-400
    • /
    • 2012
  • In this paper, charging modes of series resonant converter for a high voltage energy storage capacitor are compared in terms of charging time, peak resonant current, normalized peak resonant current and voltage in each operation mode. Operating principles of the full bridge series resonant converter with capacitor load are explained and analyzed in discontinuous and continuous operation mode. Based on the analysis and simulation result, $0.6{\omega}_r$ < ${\omega}_s$ < $0.75{\omega}_r$ and $1.3{\omega}_r$ < ${\omega}_s$ < $1.4{\omega}_r$ are evaluated to the best range of switching frequency for charging of an high voltage energy storage capacitor. 1.8 kJ/s SRC prototype is assembled with TI 28335 DSP controller and 40 kJ, 7 kV energy storage capacitor. Design rules based on the comparative analysis are verified by experiment.

An Interleaved Five-level Boost Converter with Voltage-Balance Control

  • Chen, Jianfei;Hou, Shiying;Deng, Fujin;Chen, Zhe;Li, Jian
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1735-1742
    • /
    • 2016
  • This paper proposes an interleaved five-level boost converter based on a switched-capacitor network. The operating principle of the converter under the CCM mode is analyzed. A high voltage gain, low component stress, small input current ripple, and self-balancing function for the capacitor voltages in the switched-capacitor networks are achieved. In addition, a three-loop control strategy including an outer voltage loop, an inner current loop and a voltage-balance loop has been researched to achieve good performances and voltage-balance effect. An experimental study has been done to verify the correctness and feasibility of the proposed converter and control strategy.

평균 모델을 이용한 Z-소스 인버터의 제어 (Control of the Z-Source Inverter using Average Model)

  • 이광운
    • 전력전자학회논문지
    • /
    • 제19권3호
    • /
    • pp.290-296
    • /
    • 2014
  • This paper presents a design strategy for the control of the Z-source inverter (ZSI). For the Z-network capacitor voltage control, the average current model is derived to describe the dynamics of the voltage control and the controller outputs the average current command for the capacitor. Z-network inductor current reference is derived from the average current model of the Z-network capacitor. The inner current control loop outputs the average voltage command for the Z-network inductor and the shoot-through duty ratio of the ZSI is calculated from the output using the average voltage model of the Z-network inductor. The gain values of the current and voltage controllers are directly obtained by the Z-network parameters and desired bandwidth of each controller without a gain tuning process.

Load and Capacitor Stacking Topologies for DC-DC Step Down Conversion

  • Mace, Jules;Noh, Gwangyol;Jeon, Yongjin;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1449-1457
    • /
    • 2019
  • This paper presents two voltage domain stacking topologies for powering integrated digital loads such as multiprocessors or 3D integrated circuits. Pairs of loads and capacitors are connected in series to form a stack of voltage domains. The voltage is balanced by switching the position of the capacitors in one case and the position of the loads in the other case. This method makes the voltage regulation robust to large differential load power consumption. The first configuration can be named the load stacking topology. The second configuration can be named the capacitor stacking topology. This paper aims at proposing and comparing these two topologies. Models of both topologies and a switching scheme are presented. The behavior, control scheme, losses and overall performance are analyzed and compared theoretically in simulation and experiments. Experimental results show that the capacitor stacking topology has better performance with a 30% voltage ripple reduction.

배터리 기반 2단 충전 9 kJ/s 고전압 충전기 설계 (Design of 9 kJ/s High Voltage LiPo Battery based 2-stage Capacitor Charger)

  • 조찬기;가재예;류홍제
    • 전력전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.268-272
    • /
    • 2019
  • A lithium polymer battery-based 9 kJ/s high-voltage capacitor charger, which comprises two stages, is proposed. A modified LCC resonant converter and resonant circuit are introduced at the first and second stages, respectively. In the first stage, the methods for handling low-voltage and high-current batteries are considered. Delta-wye three-phase transformers are used to generate a high output voltage through the difference between the phase and line-to-line voltages. Another method is placing the series resonant capacitor of the LCC resonant components on the transformer secondary side, which conducts considerably low current compared with the transformer primary side. On the basis of the stable operation of the first charging stage, the secondary charging stage generates final output voltage by using the resonance. This additional stage protects the rectifying diodes from the negative voltage when the output capacitor is discharged for a short time. The inductance and capacitance of the resonance components are selected by considering the resonance charging time. The design procedure for each stage with the aforementioned features is suggested, and its performance is verified by not only simulation but also experimental results.

전력용 반도체 소자의 직렬연결시 밀러효과를 이용한 소호시점 동기화 알고리즘 (Synchronization on the Points of Turn -off Time of Series-Connected Power Semiconductor Devices Using the Miller Effect)

  • 심은용;서범석;이택기;현동석
    • 대한전기학회논문지
    • /
    • 제41권3호
    • /
    • pp.237-243
    • /
    • 1992
  • The large value of the snubber capacitor is needed to protect the devices in high voltage converters using series connected power semiconductors. But that results in more losses and longer commutation time. So, new technique of series connection is required, which can minimize the value of snubber capacitor and also promote the reliability of high voltage converters. We study on the switching characteristics of series connected power semiconductors and then propose a novel switching algorithm for series-connection which is able to implement not only the dynamic voltage balancing in spite of the differerce of switching characteristics, but the minimization of the value of snubber capacitor, through the change of the value of snubber capacitor by Miller effect. Finally, we illustrate the validity of this synchronization by computer simulation and experimental results.

  • PDF

커패시터 뱅크 모듈 구성에 있어서 경제적인 크로바 시스템과 보호회로 (Low-cost crowbar system and protection scheme in capacitor bank module)

  • 임근희;조주현;이홍식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.2089-2091
    • /
    • 2000
  • Pulsed power systems consist of a capacitor bank, an isolated high-voltage charging power-supply, high-current bus-work for charging and discharging and a control system. In such pulsed power systems, the operating-lifetime of the capacitors is closely dependent on the voltage reversal. Hence, most capacitor-discharging systems includes crowbar circuits. The crowbar circuit prevents the capacitor recharging with reverse voltage. Usually it consists of crowbar resistors and high pulse-current diode-stacks connected in series. The requirements for the diode-stacks are fast-recovery time and high-voltage and large-current ratings, which results in the high cost of the pulsed-power system. This paper presents a protection scheme of a charging and discharging system of a 500kJ capacitor bank using a low-cost crowbar circuit and safety-fuses.

  • PDF

A New Single Phase Multilevel Inverter Topology with Two-step Voltage Boosting Capability

  • Roy, Tapas;Sadhu, Pradip Kumar;Dasgupta, Abhijit
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1173-1185
    • /
    • 2017
  • In this paper, a new single phase multilevel inverter topology with a single DC source is presented. The proposed topology is developed based on the concepts of the L-Z source inverter and the switched capacitor multilevel inverter. The input voltage to the proposed inverter is boosted by two steps: the first step by an impedance network and the second step by switched capacitor units. Compared to other existing topologies, the presented topology can produce a higher boosted multilevel output voltage while using a smaller number of components. In addition, it provides more flexibility to control boosting factor, size, cost and complexity of the inverter. The proposed inverter possesses all the advantages of the L-Z source inverter and the switched capacitor multilevel inverter like controlling the start-up inrush current and capacitor voltage balancing using a simple switching strategy. The operating principle and general expression for the different parameters of the proposed topology are presented in detail. A phase disposition pulse width modulation strategy has been developed to switch the inverter. The effectiveness of the topology is verified by extensive simulation and experimental studies on a 7-level inverter structure.

A Fully Soft Switched Two Quadrant Bidirectional Soft Switching Converter for Ultra Capacitor Interface Circuits

  • Mirzaei, Amin;Farzanehfard, Hosein;Adib, Ehsan;Jusoh, Awang;Salam, Zainal
    • Journal of Power Electronics
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2011
  • This paper describes a two quadrant bidirectional soft switching converter for ultra capacitor interface circuits. The total efficiency of the energy storage system in terms of size and cost can be increased by a combination of batteries and ultra capacitors. The required system energy is provided by a battery, while an ultra capacitor is used at high load power pulses. The ultra capacitor voltage changes during charge and discharge modes, therefore an interface circuit is required between the ultra capacitor and the battery. This interface circuit must have good efficiency while providing bidirectional power conversion to capture energy from regenerative braking, downhill driving and the protecting ultra capacitor from immediate discharge. In this paper a fully soft switched two quadrant bidirectional soft switching converter for ultra capacitor interface circuits is introduced and the elements of the converter are reduced considerably. In this paper, zero voltage transient (ZVT) and zero current transient (ZCT) techniques are applied to increase efficiency. The proposed converter acts as a ZCT Buck to charge the ultra capacitor. On the other hand, it acts as a ZVT Boost to discharge the ultra capacitor. A laboratory prototype converter is designed and realized for hybrid vehicle applications. The experimental results presented confirm the theoretical and simulation results.