• Title/Summary/Keyword: Capacitive switch

Search Result 51, Processing Time 0.023 seconds

A Design of Multi-Channel Capacitive Touch Sensing ASIC for SoC Applications in 0.18 ${\mu}m$ CMOS Process (0.18 ${\mu}m$ CMOS 공정을 이용한 SoC용 정전 용량형 멀티 채널 터치 센싱 ASIC의 설계)

  • Nam, Chul;Pu, Young-Gun;Park, Joon-Sung;Hong, Seong-Hwa;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.26-33
    • /
    • 2010
  • This paper presents a multi-channel capacitive touch sensing unit for SoC applications. This unit includes a simple common processing unit and switch array to detect the touch sensing input by capacitive-time(C-T) conversion method. This touch sensor ASIC is designed based on the Capacitive-Time(C-T) conversion method to have advantages of small current and chip area, and the minimum resolution of the unit is 41 fF per count with the built-in sensing oscillator, LDO regulator and $I^2C$ for no additional external components. This unit is implemented in 0.18 um CMOS process with dual supply voltage of 1.8 V and 3.3 V. The total power consumption of the unit is 60 uA and the area is 0.26 $mm^2$.

A Study on Optimizing Energy Transfer of Capacitive Switching Antenna (Capacitive Switching Antenna의 최적 에너지 전달에 관한 연구)

  • Kim, Jin-Man;Bang, Jeong-Ju;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.232-238
    • /
    • 2013
  • In this paper we describe the maximum energy transfer of CSA(Capacitive Switching Antenna). CSA which is radiated antenna system contain energy storage and switch, antenna needs to high voltage source for electrical field radiation experiment. In this experiment we employed Marx generator as a charging source. CSA can radiate electrical field more efficiently by varying antenna capacitance. The electromagnetic generation system which was using CSA has some advantages which are more simple and more effective compared to exist system. We evaluated the performance of electromagnetic wave generating system using CSA. As a result UWB gain of system is 0.47, It is higher level than exist system is 0.3. Radiated electrical field strength at 1m is 70kV/m. It is measured by D-dot sensor and gap distance is 20mm. Center frequency of CSA is approximately 25MHz. When vary the antenna gap distance from 50mm to 20mm, we can find the radiation field strength is decrease and antenna center frequency is increased. We also simulated the energy transfer efficiency to compare with experiment result. Consequentially, CSA needs to appropriate capacitance which is similar value from marx generator for maximum energy transfer, and gap is less than 1mm to increase the CSA capacitance.

Development of a DC Pulse Atmospheric Micro Plasma using a Voltage Doubled Capacitive Ballast

  • Ha, Chang-Seung;Cha, Ju-Hong;Kim, Dong-Hyeon;Lee, Hae-Jun;Lee, Ho-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.157.1-157.1
    • /
    • 2013
  • 외부 Ballast Capacitor를 이용한 Voltage Doubler 전원장치를 이용하여 Micro size의 대기압 플라즈마를 발생장치를 개발하였다. 2개의 외부 Capacitor를 병렬로 연결하여 충전한 다음 외부 Capacitor를 직렬로 연결하여 전압을 2배압 시킨 상태에서 방전이 일어나도록 하였다. Capacitor의 충 방전 제어는 Switch Device인 Insulated Gate Bipolar Transistor (IGBT)를 사용하였다. 개발된 대기압 플라즈마는 외부 Capacitor와 인가전압을 독립적으로 변화시킬 수 있기 때문에 방전 시 전류 전압을 독립적으로 제어할 수 있으며 용도에 따라 Glow 방전에서 Arc 방전까지 제어가 가능하다. 본 연구에서는 900 V의 1.22 nF 외부 Capacitor 방전과 400 V의 10 nF 외부 Capacitor 방전을 비교하였다. 방전 시 전압파형과 전류파형은 서로 다르지만 소비된 방전에너지는 340 ${\mu}J$로 동일하다. ICCD camera와 Spectrometer를 이용하여 비교 분석을 실시하였다. 방전 image 및 Optical Emission Spectroscopy 분석을 이용하여 플라즈마의 온도, 밀도 등을 시간적, 공간적으로 분석하였다.

  • PDF

A Study on the Sensor for measuring the Very Fast Transients in GIS (GIS에 있어서 급준성 과도전압 측정용 센서에 관한 연구)

  • 백용현;안창환;전덕규;이복희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.47-51
    • /
    • 1990
  • This paper deals with the electric field sensor. A capacitive voltage sensor is designed and manufactured for measuring the very fast transients generated by operating disconnection switch in GIS. It is certified that the voltage sensor has a good specific characteristic in high frequency domain and is able to measure the very fast transients included the harmonic components of 200[MHz].

A Cascaded Multilevel Inverter Using Bidirectional H-bridge Modules

  • Kang, Feel-Soon;Joung, Yeun-Ho
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.448-456
    • /
    • 2012
  • This paper presents a multilevel inverter configuration which is designed by insertion of a bidirectional switch between capacitive voltage sources and a conventional H-bridge module. The modified inverter can produce a better sinusoidal waveform by increasing the number of output voltage levels. By serial connection of two modified H-bridge modules, it is possible to produce 9 output voltage levels including zero. There are 24 basic switching patterns with the 9 output voltage levels. Among the patterns, we select the 2 most efficient switching patterns to get a lower switching loss and minimum dv/dt stress. We then analyze characteristics of Total Harmonic Distortion (THD) of the output voltage with variation of input voltage by computer-aided simulations and experiments.

New SEPIC-Flyback Converter for Boost type Converter (승압형으로 동작하는 새로운 SEPIC-Flyback 컨버터)

  • Mun S. P.;Kim S. S.;Kang K. S.;Won C. Y.;Kim Y. R.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.330-334
    • /
    • 2004
  • A new SEPIC-Flyback converter is proposed. The proposed converter is the integration of SEPIC and Flyback converter. Not only SEPIC output but also Flyback output could be fully regulated by constant frequency PWM control. Merged SEPIC and Flyback topology can share the transformer and power MOSFET. When the switch turns on, one topology operates via capacitive energy transfer. The other topology acts as inductive energy transfer while the switch is off. So, it can increase power density per one cycle. The experimental result is presented and verified.

  • PDF

The operating characteristics of novel SEPIC-Flyback converter (새로운 SEPIC-Flyback 컨버터의 동작특성)

  • Mun, Seung-Pil;Kim, Soo-Seok;Lee, Tae-Won;Won, Chung-Yuen;Kim, Young-Real
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.526-529
    • /
    • 2004
  • A new SEPIC-Flyback convater is proposed. The proposed converter is the superposition of SEPIC and Flyback converter. Not only SEPIC output but also Flyback output could be fully regulated by constant frequency PWM control. Merged SEPIC and Flyback topology could share the transformer and power MOSFET. When the switch turns of one topology operates via capacitive energy transfer. Another topology acts as powering mode while the switch is off. So, it could increase power falsify per one cycle. The operating principle of the proposed converter is described below. Prototype featuring 24V input 48V output, 100kHz switching frequency, and 100W output is simulated under the proposed topology.

  • PDF

A Study on the Construction of Test circuit and Unification of Experiment Method for High Voltage Gas-insulated Load Switch using High Power Testing System (특고압 가스 절연 부하 개폐기의 통합형 대전력 시험 방법 및 회로 구성에 관한 연구)

  • Jung, Heung-Soo;Kim, Min-Young;Kim, Juen-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.36-46
    • /
    • 2008
  • This paper is to study on the Construction of Test circuit and Unification of Experiment Method for high voltage gas-insulated load switch using high power testing system The high power testing system is a equipment to verify electrical and mechanical performance on electrical product. The system consist of short-circuit generator, back-up breaker, making switch, impedance, high voltage transformer, low voltage transformer, measuring and protection system, etc. Using this system, we can test related to high power, for example, short-time current test, active load Current test, magnetizing Current test, capacitive current test, closed loop current test, etc. Standards of high voltage gas-insulated load switch that is in use domestic distribution line are ES 5925-0002, IEC 60265-1, IEC 62271-1 and IEEE C 37.74, etc. In this paper, we standardized on the test procedure, organization of test circuit and analysis of measured data prescribed many difference standards, and applied this test method to 600[MVA] high power testing system. So that we can test the load switch satisfied standards.

A New Three Winding Coupled Inductor-Assisted High Frequency Boost Chopper Type DC-DC Power Converter with a High Voltage Conversion Ratio

  • Ahmed Tarek;Nagai Shinichiro;Hiraki Eiji;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.99-103
    • /
    • 2005
  • In this paper, a novel circuit topology of a three-winding coupling inductor-assisting a high-frequency PWM boost chopper type DC-DC power converter with a high boost voltage conversion ratio and low switch voltage stress is proposed for the new energy interfaced DC power conditioner in solar photovoltaic and fuel cell generation systems. The operating principle in a steady state is described by using its equivalent circuits under the practical condition of energy processing of a lossless capacitive snubber. The newly-proposed power MOSFET boost chopper type DC-DC power converter with the three-winding coupled inductor type transformer and a single lossless capacitor snubber is built and tested for an output power of 500W. Utilizing the lower voltage and internal resistance power MOSFET switch in the proposed PWM boost chopper type DC-DC power converter can reduce the conduction losses of the active power switch compared to the conventional model. Therefore, the total actual power conversion efficiency under a condition of the nominal rated output power is estimated to be 81.1 %, which is 3.7% higher than the conventional PWM boost chopper DC power conversion circuit topology.

Four Channel Step Up DC-DC Converter for Capacitive SP4T RF MEMS Switch Application (정전 용량형 SP4T RF MEMS 스위치 구동용 4채널 승압 DC-DC 컨버터)

  • Jang, Yeon-Su;Kim, Hyeon-Cheol;Kim, Su-Hwan;Chun, Kuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • This paper presents a step up four channel DC-DC converter using charge pump voltage doubler structure. Our goal is to design and implement DC-DC converter for capacitive SP4T RF MEMS switch in front end module in wireless transceiver system. Charge pump structure is small and consume low power 3.3V input voltage is boosted by DC-DC Converter to $11.3{\pm}0.1V$, $12.4{\pm}0.1V$, $14.1{\pm}0.2V$ output voltage With 10MHz switching frequency. By using voltage level shifter structure, output of DC-DC converter is selected by 3.3V four channel selection signals and transferred to capacitive MEMS devices. External passive devices are not used for driving DC-DC converter. The total chip area is $2.8{\times}2.1mm^2$ including pads and the power consumption is 7.52mW, 7.82mW, 8.61mW.