• Title/Summary/Keyword: Capacitance Sensor

검색결과 304건 처리시간 0.175초

반응성이 있는 메타크릴레이트 공중합체를 이용한 정전용량형 습도센서 (Capacitive Humidity Sensor Using Reactive Methacrylate Copolymers)

  • 공명선;이임렬
    • 마이크로전자및패키징학회지
    • /
    • 제10권4호
    • /
    • pp.21-27
    • /
    • 2003
  • 정전 용량형 고분자막 감습재료로 사용하기 위하여 서로 반응성이 있는 공중합체들 methyl methacrylate (MMA), ethyl methacrylate (EMA), acrylic acid (MA) 와 hydroxyethyl methacrylate (HEMA)의 공중합체들을 합성하였다. 정전 용량형 습도센서는 가교화된 폴리메타크릴레이트 공중합체 막의 양면에 금 전극을 형성시켜 제조하였다. 공중합체에서의 HEMA양이 증가할수록 상대습도에 따른 정전 용량은 증가하였다. MMA/MA/HEMA=40/10/10의 경우, 상대습도가 30%RH, 60%RH 및 90%RH에서의 정전 용량은 각 102, 134와 165 pF이었다. 또한 히스테리시스, 온도 사이클 그리고 장기안정성 결과를 측정하여 정전용량형 습도센서로서의 특성을 평가하였다.

  • PDF

단일 a-InGaZnO 박막 트랜지스터를 이용한 정전용량 터치 화소 센서 회로 (Capacitive Touch Sensor Pixel Circuit with Single a-InGaZnO Thin Film Transistor)

  • 강인혜;황상호;백영조;문승재;배병성
    • 센서학회지
    • /
    • 제28권2호
    • /
    • pp.133-138
    • /
    • 2019
  • The a-InGaZnO (a-IGZO) thin film transistor (TFT) has the advantages of larger mobility than that of amorphous silicon TFTs, acceptable reliability and uniformity over a large area, and low process cost. A capacitive-type touch sensor was studied with an a-IGZO TFT that can be used on the front side of a display due to its transparency. A capacitive sensor detects changes of capacitance between the surface of the finger and the sensor electrode. The capacitance varies according to the distance between the sensor plate and the touching or non-touching of the sensing electrode. A capacitive touch sensor using only one a-IGZO TFT was developed with the reduction of two bus lines, which made it easy to reduce the pixel pitch. The proposed sensor circuit maintained the amplification performance, which was investigated for various drive conditions.

A Polymer-based Capacitive Air Flow Sensor with a Readout IC and a Temperature Sensor

  • Kim, Wonhyo;Lee, Hyugman;Lee, Kook-Nyeong;Kim, Kunnyun
    • 센서학회지
    • /
    • 제28권1호
    • /
    • pp.1-6
    • /
    • 2019
  • This paper presents an air flow sensor (AFS) based on a polymer thin film. This AFS primarily consists of a polymer membrane attached to a metal-patterned glass substrate and a temperature-sensing element composed of NiCr. These two components were integrated on a single glass substrate. The AFS measures changes in capacitance caused by deformation of the polymer membrane based on the air flow and simultaneously detects the temperature of the surrounding environment. A readout integrated circuit (ROIC) was also fabricated for signal processing, and an ROIC chip, 1.8 mm by 1.9 mm in size, was packaged with an AFS in the form of a system-in-package module. The total size of the AFS is 1 by 1 cm, and the diameter and thickness of the circular-shaped polymer membrane are 4 mm and $15{\mu}m$, respectively. The rate of change of the capacitance is approximately 11.2% for air flows ranging between 0 and 40 m/s.

Activity and Safety Recognition using Smart Work Shoes for Construction Worksite

  • Wang, Changwon;Kim, Young;Lee, Seung Hyun;Sung, Nak-Jun;Min, Se Dong;Choi, Min-Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.654-670
    • /
    • 2020
  • Workers at construction sites are easily exposed to many dangers and accidents involving falls, tripping, and missteps on stairs. However, researches on construction site monitoring system to prevent work-related injuries are still insufficient. The purpose of this study was to develop a wearable textile pressure insole sensor and examine its effectiveness in managing the real-time safety of construction workers. The sensor was designed based on the principles of parallel capacitance measurement using conductive textile and the monitoring system was developed by C# language. Three separate experiments were carried out for performance evaluation of the proposed sensor: (1) varying the distance between two capacitance plates to examine changes in capacitance charges, (2) repeatedly applying 1 N of pressure for 5,000 times to evaluate consistency, and (3) gradually increasing force by 1 N (from 1 N to 46 N) to test the linearity of the sensor value. Five subjects participated in our pilot test, which examined whether ascending and descending the stairs can be distinguished by our sensor and by weka assessment tool using k-NN algorithm. The 10-fold cross-validation method was used for analysis and the results of accuracy in identifying stair ascending and descending were 87.2% and 90.9%, respectively. By applying our sensor, the type of activity, weight-shifting patterns for balance control, and plantar pressure distribution for postural changes of the construction workers can be detected. The results of this study can be the basis for future sensor-based monitoring device development studies and fall prediction researches for construction workers.

용량형 센서를 위한 마이크로컨트롤러에 기반을 둔 록인 증폭기 (A Microcontroller-Based Lock-In Amplifier for Capacitive Sensors)

  • 김청월
    • 센서학회지
    • /
    • 제23권1호
    • /
    • pp.24-28
    • /
    • 2014
  • A lock-in amplifier was proposed for capacitive sensor applications. This amplifier was based on a general-purpose microcontroller and had only a charge amplifier as analog circuits. All the other functions of lock-in amplifier except for the charge amplifier were implemented with firmware and the internal resources of the microcontroller. A rectangular signal, generated by the microcontroller, was used in a sensor-driving signal instead of a conventional sinusoidal signal. This makes it possible that the phase comparison circuit in the lockin amplifier is made with analog-to-digital converter, a timer and an interrupt controller. Using the oversampling method and the rectangular driving signal, we can make it easy to implement the peak detection function with software and sample the peak-to-peak signal at charge amplifier output. A charge amplifier was proposed to cancel out the base capacitance existing in capacitive sensors structurally. The experimental results show that the lock-in amplifier operating in the supply voltage of 3.0 V cancels out the base capacitance and has good linearity.

Pattern recognition using AC treatment for semiconductor gas sensor array

  • Nguyen, Viet-Dung;Joo, Byung-Su;Huh, Jeung-Su;Lee, Duk-Dong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅲ
    • /
    • pp.1549-1552
    • /
    • 2003
  • Semiconductor gas sensor using tin oxide as sensing material has been used to detect gases based on the fact that impedance of the sensing material varies when the gas sensor is exposed to the gases. This variation comprises of two parts. The first one is variation in resistance of the sensing material and the other is expressed in terms of the sensor capacitance variation. Normally, only variation of the sensor resistance is considered. In this paper, using AC measurement with a capacitor-coupled inverting amplifier circuit, both changes in the sensor resistance and variations in the sensor capacitance were investigated. These characteristics were represented as magnitude gain and phase shift of AC signal at a specific frequency after passing it through the sensor and the designed circuit. A two-stage artificial neural network, which utilized the information above, was employed to identify and quantify three combustible gases: methane, propane and butane. The network outputs were approximately proportional to concentrations of test gases with reasonable level of error.

  • PDF

크로스 커패시턴스를 이용한 발전기 고정자 권선 절연물 흡습 측정 센서 (Water Absorption Sensor of Generator Stator Bar Insulation using Cross Capacitance)

  • 배용채;김희수;이두영;이욱륜;이래덕
    • 전기학회논문지
    • /
    • 제60권10호
    • /
    • pp.1972-1977
    • /
    • 2011
  • The mechanical integrity of generator stator windings is one of the critical point because the electric power is generated and conducted to power system through these windings. To cool down the heat emitted from generator winding during its operation, a majority of generators use de-mineralized water characterized by high cooling efficiency. Contrary to such the excellent cooling efficiency, however, the damaged bar insulations attributed to the absorption of cooling water in the generator stator winding lead to highly time- and cost consuming efforts as well as to service deterioration due to unexpected forced outage of generator. It is described that the new design of water absorption sensor using cross capacitance for generator in power plant in order to increase the reliability of water absorption diagnostics for generator stator bar insulation.

전기 절연유 열화진단을 위한 3-단자식 전기용량 센서 개발 및 진단특성 평가 (Development and Evaluation of 3-terminal Type Capacitive Sensor for the Diagnosis of Electrical Insulating Oil)

  • 김주한;한상옥
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.476-482
    • /
    • 2009
  • This paper describes the development of capacitive sensor for the diagnosis of liquid dielectrics, which is widely used as the electrical insulating oil of transformer, circuit breaker, cable and etc. To survey the dielectric properties of the virgin and aged electrical insulating oils, we utilized the highly precise measuring system, using the principle of cross capacitance. The measured properties were used to determine the design factors of the sensor. Then the factors were optimized with the help of computational analysis. To evaluate diagnosis by the sensor, we performed accelerated thermal aging test about electrical insulating oils. The condition of aged specimens were investigated by measurements of relative permittivity i.e. capacitance change by capacitive sensor. And to evaluate the hysteresis characteristics with the change of temperature, we constructed a testing system, which was composed with vacuum drying oven, oil chamber and measuring instruments, such as LCR meter, MUX and so forth. Through the results of this investigation, we confirmed the superior characteristics of the newly developed sensor.

패럴린 박막을 이용한 기계화학적 폭발물 센서 (Parylene membrane based chemomechanical explosive sensor)

  • 신재하;이성준;차미선;김문상;이정훈
    • 센서학회지
    • /
    • 제19권6호
    • /
    • pp.497-503
    • /
    • 2010
  • This paper reports a chemomechanical explosive sensor based on a thin polymer membrane. The sensor consists of thin parylene membrane and electrodes. Parylene membrane is functionalized with 4-mercaptophenol which interacts strongly with nitrotoluene based explosives. The membrane deflection caused by molecular interaction between the surface and explosives is monitored by capacitance between the membrane and the substrate. To measure the capacitance, electrodes are formed on the membrane and the substrate. While the previous cantilever system requires a bulky optical measuring system, this purely electric monitoring method offers a compact and effective system. Thus, this explosive sensor can be readily miniaturized and used in the field. The developed sensor can reliably detect dinitrotoluene and its limit of detection is evaluated as approximately 110 ppb.