• Title/Summary/Keyword: Capacitance Sensor

Search Result 305, Processing Time 0.025 seconds

MnCo2S4/CoS2 Electrode for Ultrahigh Areal Capacitance

  • Pujari, Rahul B.;Lokhande, C.D.;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.215-219
    • /
    • 2020
  • MnCo2S4/CoS2 electrode with highly accessible electroactive sites is prepared using the hydrothermal method. The electrode exhibits an areal capacitance of 0.75 Fcm-2 at 6 mAcm-2 in 1 M KOH. The capacitance is further increased to 2.06 Fcm-2 by adding K3Fe(CN)6 and K4Fe(CN)6 (a redox couple) to KOH. This increment is associated with the redox-active properties of cobalt and manganese transition metals, as well as the ion pair of [Fe(CN)6]-3/[Fe(CN)6]-4. The capacitance retention of the MnCo2S4/CoS2 electrode is 87.5% for successive 4000 charge-discharge cycles at 10 mAcm-2 in a composite electrolyte system of KOH and ferri/ferrocyanide. The capacitance enhancement is supported by the lowest equivalent series resistance (0.62 Ωcm-2) of MnCo2S4/CoS2 in the presence of redox additive couple compared with the bare KOH electrolyte.

Fabrication and Characteristics of a Varactor Diode for UHF TV Tuner Operated within Low Tuning Voltage (저전압 UHF TV 튜너용 바렉터 다이오드의 제작 및 특성)

  • Kim, Hyun-Sik;Moon, Young-Soon;Son, Won-Ho;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.185-191
    • /
    • 2014
  • The width of depletion region in a varactor diode can be modulated by varying a reverse bias voltage. Thus, the preferred characteristics of depletion capacitance can obtained by the change in the width of depletion region so that it can select only the desirable frequencies. In this paper, the TV tuner varactor diode fabricated by hyper-abrupt profile control technique is presented. This diode can be operated within 3.3 V of driving voltage with capability of UHF band tuning. To form the hyperabrupt profile, firstly, p+ high concentration shallow junction with $0.2{\mu}m$ of junction depth and $1E+20ions/cm^3$ of surface concentration was formed using $BF_2$ implantation source. Simulation results optimized important factors such as epitaxial thickness and dose quality, diffusion time of n+ layer. To form steep hyper-abrupt profile, Formed n+ profile implanted the $PH_3$ source at Si(100) n-type epitaxial layer that has resistivity of $1.4{\Omega}cm$ and thickness of $2.4{\mu}m$ using p+ high concentration Shallow junction. Aluminum containing to 1% of Si was used as a electrode metal. Area of electrode was $30,200{\mu}m^2$. The C-V and Q-V electric characteristics were investigated by using impedance Analyzer (HP4291B). By controlling of concentration profile by n+ dosage at p+ high concentration shallow junction, the device with maximum $L_F$ at -1.5 V and 21.5~3.47 pF at 0.3~3.3 V was fabricated. We got the appropriate device in driving voltage 3.3 V having hyper-abrupt junction that profile order (m factor) is about -3/2. The deviation of capacitance by hyper-abrupt junction with C0.3 V of initial capacitance is due to the deviation of thermal process, ion implantation and diffusion. The deviation of initial capacitance at 0.3 V can be reduced by control of thermal process tolerance using RTP on wafer.

Highly Sensitive Multichannel Interdigitated Capacitor Based Bitterness Sensor

  • Khan, Md. Rajibur Rahaman;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.69-75
    • /
    • 2018
  • In this study, we propose a multichannel interdigitated capacitor (IDC) sensor for detecting the bitterness of coffee. The operating principle of the device is based on the variation in capacitance of a sensing membrane in contact with a bitter solution. Four solvatochromic dyes, namely, Nile red, Reichardt's dye, auramine-O, and rhodamine-B, were mixed with polyvinylchloride (PVC) and N,N-dimethylacetamide (DMAC), to create four different types of bitter-sensitive solutions. These solutions were then individually inserted into four interdigitated electrodes (IDEs) using a spin coater, to prepare four distinct IDC sensors. The sensors are capable of detecting bitterness-inducing chemical compounds in any solution, at concentrations of approximately $1{\mu}M$ to 1 M. The sensitivity of the IDC bitterness sensor containing the Reichardt's dye sensing-membrane was approximately 1.58 nF/decade. The multichannel sensor has a response time of approximately 6 s, and an approximate recovery time of 5 s. The proposed sensor offers a stable sensing response and linear sensing performance over a wide measurement range, with a correlation coefficient ($R^2$) of approximately 0.972.

A Simple Capacitive Sensor Array Based on a Metal-Insulator-Metal Structure

  • Lee, Hee-Ho;Choi, Jin-Hyeon;Ahn, Jung-Il;Kim, Chang-Soo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.83-89
    • /
    • 2012
  • A simple array of metal-insulator-metal capacitive elements was proposed for a potential application in humidity sensing platforms. We fabricated meso-scale sensors with different sizes(large-size: $2.7{\times}2.7mm^2$ ; mid-size: $1.5{\times}1.5mm^2$ ; small-size: $0.7{\times}0.7mm^2$) and characterized the performance of each design. Polyimide films were utilized as a humidity-sensitive layer. Capacitance changes of the polyimide layer were measured with respect to water absorption. The device showed sensitivity in the full range of relative humidity (RH) with excellent linearity(correlation coefficient > 0.994). This array structure exhibits unique advantages including easy fabrication process, high batch productivity, and high structural compatibility with various substrate materials. It is anticipated that this device structure will be potentially useful in unique applications including mapping spatial humidity variations over a meso-scale area and implementing flexible humidity sensing element arrays.

A Study on the Electrical Properties of Thin Film Type Humidity Sensor (박막형 습도센서의 전기적 특성에 대한 연구)

  • You, Do-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1012-1016
    • /
    • 2008
  • [ $TiO_2-V_2O_5$ ] sol was fabricated using sol-gel method and $TiO_2-V_2O_5$ thin films were fabricated using dip-coating method. $V_2O_5$ sol was added 0.01mole, 0.03mole, 0.05mole into $TiO_2$ sol. As a results of crystalline properties, $V_2O_5$ peaks were not found in spite of $V_2O_5$ additive. Thickness of thin films increased $0.1{\sim}0.25{\mu}m$ every a dipping. Capacitance of thin films increased with increasing heat treatment temperature and it increased largest at $700^{\circ}C$. Capacitance of thin films decreased with increasing $V_2O_5$ additive and it increased largest at 0.01mole. Because adsorption time and desorption time of thin films was about 2 minutes 40 seconds and about 3 minutes 40 seconds respectively, adsorption time was faster about 1 minutes than desorption time.

Capacitance-type Alcohol Sensors using Porous Silicon Layer (다공질 실리콘 층을 이용한 정전용량형 알코올 센서)

  • Kim, Seong-Jeen
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.9
    • /
    • pp.31-36
    • /
    • 1999
  • A capacitance-type sensor using porous silicon layer is developed to measure aqueous alcohol concentration. Since alcohol, so called ethanol, is very permeable into the silicon wafer, it is often used to help chemical reaction when the silicon wafer is processed under some aqueous solution. In this work, the sensing property was measured for the alcohol concentration from zero to near 100 percent with two types of samples with porous silicon layer formed in 25 and 35% HF solution, respectively. Good reliability as well as fast response time and good linearity were shown over 10kHz and the measured capacitance was observed to be inverse to alcohol concentration due to the decrease of the whole dielectric constant in porous silicon layer.

  • PDF

The Development of Pulverized Coal(PC) Flow-Meter using Capacitance (정전용량을 이용한 미분탄 유량계의 개발)

  • Gim, Jae-Hyeon;Lee, Yong-Sik;Hwang, Keon-Ho;Jeong, Sung-Won;Yeo, Jun-Ho;So, Ji-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.61-67
    • /
    • 2008
  • In this papar, the flow meter system for pulverized coal is developed for the pulverizer-burner system of the boiler or the blast furnace. The sensor of the system a lied the capacitance with a pair of electrode on the outer wall of the electric insulator pipe. The circuit is designed for the measurement of the granule flow density combining as a measuring electrode and a reference. In order to measure granule-flow density, the calibration curve between the weight measured from loadcell and the voltage from the circuit is created. It is verified that the flow meter system has reliability and accuracy using on-line test.

Development of an Electrical Capacitance Tomography Code for Analysis of Two-Phase Flow in the Rectangular Pipe (사각관 이상유동 분석을 위한 전기적 캐패시턴스 토모그라피 코드 개발)

  • Lee, Kyoung-Hwang;Lee, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.87-94
    • /
    • 2005
  • A computer code for Electrical Capacitance Tomography (ECT) is developed to sense the cross sectional phase distribution of two-phase flow in the rectangular pipe in which the tomography sensor furnished by the insulated wall, electrodes, and electric field screen. The computer code had two steps for the image reconstruction. In the forward projection step, the sensitivity matrix was constructed based on the electric field calculated by the finite difference method. In the backward projection step, the sensitivity matrix and the measured capacitances were used to reconstruct the cross sectional image. Several algorithms including LBP, TR, ITR, and PLI were employed to find the proper one for the two-phase flow analysis. Since the dielectric constant of the water in two-phase flow is sensitive to the thermal parameter such as, temperature and pressure, the developed code was evaluated to find their accuracy, speed of calculation, and sensitivity to the variation of the dielectric constant. It was found that the iterative methods are superior to the direct methods for the image reconstruction, and the PLI method was the best in the variation of the dielectric constants.

A Study on Optimizing Energy Transfer of Capacitive Switching Antenna (Capacitive Switching Antenna의 최적 에너지 전달에 관한 연구)

  • Kim, Jin-Man;Bang, Jeong-Ju;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.232-238
    • /
    • 2013
  • In this paper we describe the maximum energy transfer of CSA(Capacitive Switching Antenna). CSA which is radiated antenna system contain energy storage and switch, antenna needs to high voltage source for electrical field radiation experiment. In this experiment we employed Marx generator as a charging source. CSA can radiate electrical field more efficiently by varying antenna capacitance. The electromagnetic generation system which was using CSA has some advantages which are more simple and more effective compared to exist system. We evaluated the performance of electromagnetic wave generating system using CSA. As a result UWB gain of system is 0.47, It is higher level than exist system is 0.3. Radiated electrical field strength at 1m is 70kV/m. It is measured by D-dot sensor and gap distance is 20mm. Center frequency of CSA is approximately 25MHz. When vary the antenna gap distance from 50mm to 20mm, we can find the radiation field strength is decrease and antenna center frequency is increased. We also simulated the energy transfer efficiency to compare with experiment result. Consequentially, CSA needs to appropriate capacitance which is similar value from marx generator for maximum energy transfer, and gap is less than 1mm to increase the CSA capacitance.

The Interdigitated-Type Capacitive Humidity Sensor Using the Thermoset Polyimide (열경화성 폴리이미드를 이용한 빗살전극형 정전용량형 습도센서)

  • Hong, Soung-Wook;Kim, Young-Min;Yoon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.604-609
    • /
    • 2019
  • In this study, we fabricated a capacitive humidity sensor with interdigitated (IDT) electrodes using a thermosetting polyimide as a humidifying material. First, the number of electrodes, thickness, and spacing of the polyimide film were optimized, and a mask was designed and fabricated. The sensor was fabricated on a silicon substrate using semiconductor processing equipment. The area of the sensor was $1.56{\times}1.66mm^2$, and the width of the electrode and the gap between the electrodes were each $3{\mu}m$. The number of electrodes was 166, and the length of an electrode was 1.294 mm for the sensitivity of the sensor. The sensor was then packaged on a PCB for measurement. The sensor was inserted into a chamber environment with a temperature of $25^{\circ}C$ and connected to an LCR meter to measure the change in capacitance at relative humidity (RH) of 20% to 90%, 1 V, and 20 kHz. The results showed a sensitivity of 26fF/%RH, linearity of < ${\pm}2%RH$, and hysteresis of < ${\pm}2.5%RH$.