• Title/Summary/Keyword: Cap model

Search Result 262, Processing Time 0.033 seconds

Structural design and evaluation of a 3MW class wind turbine blade

  • Kim, Bum-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.154-161
    • /
    • 2014
  • This research presents results of structural designs and evaluations for 3MW Wind Turbine Blade by FEM analysis. After the GFRP model was designed as a baseline model, failure check by Puck's failure criterion and buckling analysis were accomplished to verify safety of wind turbine blade in the critical design load case. Moreover, applicability of two kinds of carbon spar cap model, was studied by comparing total mass, price and tip deflection to the GFRP model. The results showed that the GFRP model had sufficient structural integrity in the critical design load case, and the carbon spar cap model could be a reasonable solution to reduce weights, tip deflections.

A Novel Mathematical Modeling in Web Transport Systems considering Thermal and Gravity Effects (열 및 중력 효과를 고려한 웹 이송 시스템의 새로운 수학적 모델링)

  • Kim J.S.;Kim G.Y.;Shin J.M.;Lee J.M.;Choi J.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.333-334
    • /
    • 2006
  • A novel mathematical modeling in web transport systems for Continuous Annealing Processes (CAP) is proposed. Despite of thermal and weight effects in dynamics of web transport systems, the conventional mathematical model does not consider those effects. Disregard of these effects causes the low manufacturing quality of webs in CAP. In order to improve the manufacturing quality of webs in CAP, moreover, precise tension control is required based on the mathematical model. Therefore, an advanced mathematical model considering thermal and weight effects in CAP should be established. The effectiveness of a novel mathematical model is evaluated by comparing the performances of the PI tension control system based on the proposed mathematical model with that based on the conventional one through the computer simulation.

  • PDF

Effect on Dynamic Behavior of Group Piles with Changing Thickness of Pile Cap

  • Jeong, Kusic;Ahn, Sangro;Kim, Seongho;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.7
    • /
    • pp.5-11
    • /
    • 2018
  • Instead of a single pile, group piles are usually used for the pile foundation. If the earthquake occurs in the ground where group piles are installed, dynamic behavior of group piles are affected not only by interaction of piles and the ground movement but also by the pile cap. However, in Korea, the pile cap influence is not taken account into the design of group piles. Research on dynamic behavior of group piles has been performed only to verify interaction of piles and the ground and has not considered the pile cap as a factor. In this research, 1g shaking table model tests were performed to verify the thickness of the pile cap affects dynamic behavior of group piles that were installed in the ground where the earthquake would occur. The test results show that, as thickness of the pile cap increased, acceleration and horizontal displacement of the pile cap decreasd while vertical displacement of the pile cap increased. The results also showed that, among the group files tested, acceleration, horizontal displacement, and vertical displacement of the bearing pile are smaller than those of the friction pile.

A Constitutive Model for Soil Using Mohr-Coulomb Criteria (Mohr-Coulomb식(式)을 사용한 흙의 구성(構成)모델)

  • Lee, Hyung Soo;Lee, Byung Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1405-1415
    • /
    • 1994
  • The soil on the behavior of the nonlinear elastic work-hardening plasticity has a variety of stress paths due to the state of soil and the test conditions. The soil with a specific volume ${\upsilon}$ in principal stress space (${\sigma}_1$, ${\sigma}_2$, ${\sigma}_3$, and ${\upsilon}$v) displays the shape of an irregular hexagonal pyramid with an end cap. With variations of ${\upsilon}$ the size of the cap is changed but its shape remains unchanged and the movement of the cap is controlled by the increase or decrease of the plastic volumetric strain. By reflecting such a property of soil various cap models have been developed by researchers. In this thesis, a constitutive model of soil with a combination of the nonlinear elastic work-hardening plastic cap and the failure surfaces of Mohr-Coulomb (M-C cap model) has been developed. According to the the results of analyses using the work-hardening plastic cap model, the normally consolidated soil under shearing has experienced the work-hardening and plastic flow (movement of the cap). But in the shearing of the overconsolidated soil the elastic behavior is shown until the stress path has reached the failure surface and the cap does not move.

  • PDF

Identification of Factors Driving Crew Production Rate : Methodology and Application

  • Huh Youngki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.93-100
    • /
    • 2004
  • For accurate construction contract time estimation, few parameters are more significant than crew production rates and factors affecting the rates. However, statistical analysis techniques for finding such factors are not always simple mainly because there are many factors and the interaction between factors is not well quantitatively understood. This paper presents methodology of identifying factors driving crew production rates. The methodology is further demonstrated with representative data collected by the author from 13 on-going highway constructions. Three factors were identified as statistically significant drivers of Cap crew production rate: 'Cap Size (m3/ea)'; 'Cap Length (m)'; and 'Cap Shape (Rectangle vs. Inverted 'T')'. It was also found that the production rates are best explained by a multiple regression model with two of the drivers; 'Cap Size' and 'Cap Shape'.

Investigation on Noise Characteristics of Pile Driving Operation and Design of a Low-noise Pile Cap Based on the Scale Model Experiment (항타공법에 의한 발생 소음 특성 분석 및 축소 모형 실험을 이용한 저소음 말뚝 캡의 설계)

  • 이종화;이정권;이기홍;정승창
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.445-448
    • /
    • 2001
  • Noise radiated from pile driving operation is one of major sources of community noise pollution and thus its operation method is strictly restricted by regulations. Although the drilling method is now used been commonly used in urban areas because of its activity, the benefit of low noise decreases due to high working cost. In the present work, noise characteristics of pile driving operation are carried out. Based on the study result, a low-noise pile cap for driven piles is developed in order to satisfy both the noise level restriction and the economical efficiency. Effects of pile cap are investigated by a scale model experiment, which is focused on the variation of impact force and sound pressure level. The results show a good possibility of noise reduction by an appropriately designed pile cap.

  • PDF

Densification Behavior of Aluminum Alloy Powder Mixed with Zirconia Powder Inclusion Under Cold Compaction (냉간압축 하에서 지르코니아 분말이 혼합된 알루미늄합금 분말의 치밀화 거동)

  • Ryu, Hyun-Seok;Lee, Sung-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1324-1331
    • /
    • 2002
  • Densification behavior of composite powders was investigated during cold compaction. Experimental data were obtained for aluminum alloy powder mixed with zirconia powder inclusion under triaxial compression. The Cap model with constraint factors was implemented into a finite element program (ABAQUS) to simulate compaction responses of composite powders during cold compaction. Finite element results were compared with experimental data for densification behavior of composite powders under cold isostatic pressing and die compaction. The agreements between experimental data and finite element calculations from the Cap model with constraint factors were good.

Structural Safety Analysis According to the Shape of Door Impact Bar (도어 충격봉의 형상에 따른 구조 안전 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.21-25
    • /
    • 2012
  • In this study, the safest model can be selected by the simulation result of structural safety analysis according to the shape of impact bar affected at side door of automobile. The open sectional model of semicircle type has the lowest deformation and stress among 4 kinds of models. As the weight of this model has 30% in comparison with other models, it becomes most economical and stable. As the open sectional model of cap type the highest deformation and stress among 4 kinds of models, it becomes weakest. The closed models with circular and rectangular types has the stress far lower than cap type. The maximum deformation is shown at the center part of impact bar but the maximum stress occurs at the joint part between impact bar and frame.

Densification Behavior of Metal and Ceramic Powder under Cold Compaction

  • Lee, Sung-Chul;Kim, Ki-Tae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.179-180
    • /
    • 2006
  • Densification behavior of various metal and ceramic powder was investigated under cold compaction. The Cap model was proposed based on the parameters obtained from axial and radial deformation of sintered metal powder compacts under uniaxial compression and volumetric strain evolution. For ceramic powder, the parameters were obtained from deformation of green powder compacts under triaxial compression. The Cap model was implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of various metal and ceramic powder under cold compaction.

  • PDF

An Estimation of Emission Reduction Rates to Achieve the Target Air Quality in Seoul Metropolitan Area (수도권 지역별 목표대기질 달성을 위한 오염배출 삭감율 산정 연구)

  • Kim, Jeongsoo;Kim, Jiyoung;Hong, Jihyung;Jung, Dongil;Ban, Soojin;Park, Sangnam
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • This study was carried out to estimate the emission reduction rates for the regional allowable emissions by special measures to achieve the target air quality in Seoul Metropolitan Area (SMA). A modeling system was designed to validate the details in enforcement regulations set up by local governments based on the current status and plans for air quality improvement. Modeling system was composed of meteorological model (MM5), emission model (SMOKE), and air quality model (CMAQ). Predicted results by this system show quiet well not only daily air pollutants concentration but also the tendencies of wind direction, wind speed and temperature. To achieve the target air quality in Seoul Metropolitan Area (SMA), emission allowances are estimated by seasons and regions. Referring to the base year 2002, it was estimated that emission reduction rates to achieve the intermediate goal in 2007 were 14.2% and 16.6% for NOx and $PM_{10}$, respectively. It was also estimated that 52% of NOx and 48% of $PM_{10}$ reductions from the base year 2002 would be required to accomplish the air quality improvement goal of 22 ppb for $NO_2$, and $40mg/m^3$ for $PM_{10}$ in year 2014. To improve $NO_2$ and $PM_{10}$ concentration through emissions reduction policies, it was found that emissions reduction for the on-road mobile sources would be the most effective in SMA.