• Title/Summary/Keyword: Canine retraction

Search Result 41, Processing Time 0.028 seconds

The Pattern of Initial Displacement in Lingual Lever Arm Traction of 6 Maxillary Anterior Teeth According to Different Material Properties: 3-D FEA (유한요소모델에서 레버암을 이용한 상악 6전치 설측 견인 시 초기 이동 양상)

  • Choi, In-Ho;Cha, Kyung-Suk;Chung, Dong-Hwa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.2
    • /
    • pp.213-230
    • /
    • 2008
  • The aim of this study was to analyze the initial movement and the stress distribution of each tooth and periodontal ligament during the lingual lever-arm retraction of 6 maxillary incisors using FEA. Two kinds of finite element models were produced: 2-properties model (simple model) and 24-properties model (multi model) according to the material property assignment. The subject was an adult male of 23 years old. The DICOM images through the CT of the patient were converted into the 3D image model of a skull using the Mimics (version 10.11, Materialise's interactive Medical Image Control System, Materialise, Belgium). After series of calculating, remeshing, exporting, importing process and volume mesh process was performed, FEA models were produced. FEA models are consisted of maxilla, maxillary central incisor, lateral incisor, canine, periodontal ligaments and lingual traction arm. The boundary conditions fixed the movements of posterior, sagittal and upper part of the model to the directions of X, Y, Z axis respectively. The model was set to be symmetrical to X axis. Through the center of resistance of maxilla complex, a retraction force of 200g was applied horizontally to the occlusal plane. Under this conditions, the initial movements and stress distributions were evaluated by 3D FEA. In the result, the amount of posterior movement was larger in the multi model than in the simple model as well as the amount of vertically rotation. The pattern of the posterior movement in the central incisors and lateral incisors was controlled tipping movement, and the amount was larger than in the canine. But the amount of root movement of the canine was larger than others. The incisor rotated downwardly and the canines upwardly around contact points of lateral incisor and canine in the both models. The values of stress are similar in the both simple and multi model.

A photoelastic study on the initial stress distribution of the upper anterior teeth retraction using combination loop archwire and sliding mechanics (Combination loon archwire와 활주역학을 이용한 상악전치의 후방 견인시 나타나는 초기 응력 분포에 관한 광탄성학적 연구)

  • Yim, Kang-Soon;Lee, Jin-Woo;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.34 no.4 s.105
    • /
    • pp.303-312
    • /
    • 2004
  • An unfavorable tipping movement can occur during the retraction of anterior teeth because orthodontic force is loaded by brackets positioned far from the center of resistance. To avoid this unfavorable movement, a compensating curved wire or lingual root torque wire is used. The purpose of this study is to investigate, using photoelastic material, the distribution of initial stress associated with the retraction of the incisors according to the degree of the compensating curve, to model changes associated with tooth ud alveolar bone structure. The following results were obtained by analysis of the polarizing plate of the effects of initial stress resulting from retraction of the anterior teeth: 1. When the incisors were retracted using combination archwire or sliding mechanics, the maximal polarizing pattern of the apical area decreased as the degree of the compensating owe increased from 0 to 15 to 30. 2. When the incisors were retracted by the combination archwire or sliding mechanics, the maximal polarizing pattern of the canine and premolar area increased as the degree of the compensating curve increased from 0to 15to 30. 3. A lower degree of polarizing patterns were associated with the combination archwire technique than the sliding mechanics technique at a given force. The above results indicate that there is no significant difference between the combination loop archwire technique and sliding mechanics, for the retraction of maxillary anterior teeth with decreased lingual tipping tendency by a compensating curve on the arch wire. However, the use of sliding mechanics is more effective for the prevention of lingual inclination of the anterior teeth, because the hook used in sliding mechanics is closer to the center of resistance of the maxillary anterior teeth.

The pattern of movement and stress distribution during retraction of maxillary incisors using a 3-D finite element method (상악 전치부 후방 견인 시 이동 양상과 응력 분포에 관한 삼차원 유한요소법적 연구)

  • Chung, Ae-Jin;Kim, Un-Su;Lee, Soo-Haeng;Kang, Seong-Soo;Choi, Hee-In;Jo, Jin-Hyung;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.37 no.2 s.121
    • /
    • pp.98-113
    • /
    • 2007
  • Objective: The purpose of this study was to evaluate the displacement pattern and the stress distribution shown on a finite element model 3-D visualization of a dry human skull using CT during the retraction of upper anterior teeth. Methods: Experimental groups were differentiated into 8 groups according to corticotomy, anchorage (buccal: mini implant between the maxillary second premolar and first molar and second premolar reinforced with a mini Implant, palatal: mini implant between the maxillary first molar and second molar and mini implant on the midpalatal suture) and force application point (use of a power arm or not). Results: In cases where anterior teeth were retracted by a conventional T-loop arch wire, the anterior teeth tipped more postero-inferiorly and the posterior teeth moved slightly in a mesial direction. In cases where anterior teeth were retracted with corticotomy, the stress at the anterior bone segment was distributed widely and showed a smaller degree of tipping movement of the anterior teeth, but with a greater amount of displacement. In cases where anterior teeth were retracted from the buccal side with force applied to the mini implant placed between the maxillary second premolar and the first molar to the canine power arm, it showed that a smaller degree of tipping movement was generated than when force was applied to the second premolar reinforced with a mini implant from the canine bracket. In cases where anterior teeth were retracted from the palatal side with force applied to the mini implant on the midpalatal suture, it resulted in a greater degree of tipping movement than when force was applied to the mini implant between the maxillary first and second molars. Conclusion: The results of this study verifies the effects of corticotomies and the effects of controlling orthodontic force vectors during tooth movement.

A study on the effect of the magnitude of the gable bends on the tooth movement pattern during on-masse space closure in the maxillary dentition (상악전치 후방 견인시 견인 loop후방에 부여한 gable bend 양에 따른 치아이동 양상에 관한 연구)

  • Chun, Youn-Sic;Row, Joon;Jung, Sang-Hyuk;Kim, Hui-Jung
    • The korean journal of orthodontics
    • /
    • v.34 no.1 s.102
    • /
    • pp.33-45
    • /
    • 2004
  • The purpose of this experimental study was to determine appropriate magnitude of the Gable bends to produce maximum retraction of the anterior teeth. The Calorific Machine was used to illustrate the tooth movement in three dimension. The experimental teeth except the first premolar were embedded in the artificial alveolar bone part. In a series of experiments, the extraction space was closed using arch wires with bull loops into which the gable bends of $10^{\circ},\;20^{\circ},\;30^{\circ}$ degrees were incorporated. The experiments were repeated three times for each degree of the gable bend. Before and after the space closure, radiographs were taken in the sagittal and occlusal directions using occlusal films. Analysis of variance and Scheffe post hoc test were used to determine significant differences among the three groups. The following results were obtained. 1. As magnitudes of the gable bends increased, more bodily anterior tooth movement was seen and the distance of retraction also increased. 2. As magnitudes of the gable bends increase, the amount of posterior tooth protraction decreased while intrusive and buccal movement increased. 3. The arch was coordinated by distal-in rotation of the canine and mesial-in rotation of the second premolar adjacent to the extraction space.

ORTHODONTIC TREATMENT WITH UPPER FIRST AND LOWER SECOND PREMOLARS EXTRACTED (상악 제1 및 하악 제2 소구치의 발거를 이용한 교정치료)

  • Na, Jong-Yeal;Kim, Tae-Woo;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.26 no.1 s.54
    • /
    • pp.113-124
    • /
    • 1996
  • The purpose of this report is to present the successful improvement of occlusal relationship and facial estherics in Class II div.1 malocclusion by orthodontic treatment with upper first premolars and lower second premolars extracted. Before treatment, the patients showed Class II div. 1 relation with severe overjet. deep overbite, large ANB angle, retrusive mandible and a convex soft tissue profile. After treatment, normal canine and molar relationships were obtained. Facial esthetics were improved. There were no mesial tipping of lower first molars and root resorptions. With the adequate diagnosis and treatment plan and biomechanics, the application of upper first and lower second premolar extraction may be one of good strategies in some Class II cases treatment.

  • PDF

CASE REPORT : FORCED ERUPTION FOR IMPACTED ANTERIOR TOOTH (Forced eruption을 이용한 매복 전치의 치험례)

  • Kong, Seok-Bae;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.3
    • /
    • pp.409-415
    • /
    • 2005
  • Impaction of permanent incisor occurs rare than the canine & third molar. But it's often observed in school age child. The causes of impaction are trauma, space deficiency, mesiodens, infections of root apex, etc. In spite of elimination of cause, normal eruption of impacted tooth is rare. Though eruption is normal, the position of tooth will be incorrect. Because the impacted tooth results in malocclusion, root resorption of adjacent tooth, pathologic cystic change, it should be confirmed the precise position by clinical and radiographic exam and found the correct location by appropriate treatment plan. In case of pathologic change of impacted tooth and injury to adjacent tooth, it will be extracted. But through orthodontic retraction, the function and esthetics of tooth can be restored. It is important that impacted tooth should be detected early and diagnosed correctly, and appropriate treatment plan should be made. Before impacted tooth is retracted, the considerations of space for alignment and anchorage should be preceded and through appropriate force and mechanics, the side effects, for example, a root resorption should be minimized. In this study, we guided impacted tooth to normal position by using a forced eruption.

  • PDF

Three-dimensional finite element analysis of initial tooth displacement according to force application point during maxillary six anterior teeth retraction using skeletal anchorage (골격성 고정원을 이용한 상악 6전치 후방 견인시 힘의 적용점 변화에 따른 치아 이동 양상에 관한 유한 요소법적 분석)

  • Kim, Chan-Nyeon;Sung, Jae-Hyun;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.33 no.5 s.100
    • /
    • pp.339-350
    • /
    • 2003
  • The purpose of this study was to investigate the micro-implant height and anterior hook height to prevent maxillary six anterior teeth from lingual tipping and extruding during space closure. We manufactured maxillary dental arch form, bracket and wire, using the computer aided three-dimensional finite element method. Bracket was $.022'{\times}.028'$ slot size and attached to tooth surface. Wire was $.019'{\times}.025'$ stainless steel and $.032'{\times}.032'$ stainless steel hook was attached to wire between lateral incisor and canine. Length of hook was 8mm and force application points were marked at intervals of In. Four micro-implants were implanted on alveolar bone between second premolar and first molar. The heights of them were 4, 6, 8, 10mm starting from wire. We analyzed initial displacement of teeth by various force application point applying force of 150gm to each micro-implant and anterior hook. The conclusions of 4his study are as the following : 1. When the micro-implant height was 4m and the anterior hook height was 5mm and below, anterior teeth were tipped lingually. When the anterior hook height was 6mm and above, anterior teeth were tipped labially. 2. When the micro-implant height was 6mm and the anterior hook height was 6mm and below, the anterior teeth were tipped lingually. When the anterior hook height was 6m and above, the anterior teeth were tipped labially. But lingual tipping of anterior teeth decreased and labial tipping Increased when the micro-implant height was 6mm, compared with 4mm micro-implant height. 3. When the micro-implant height was 8mm and the anterior hook height was 2mm, the anterior teeth were tipped lingually. When the anterior hook height was 3mm and above, labial tipping movement of the anterior teeth increased proportionally. 4. When the micro-implant height was 10mm and the anterior hook height was 2mm and above, labial tipping of the anterior teeth increased proportionally. 5. As the anterior hook height increased, aterior teeth were tipped more labially. But extrusion occurred on canine and premolar area because of the increase of wire distortion. 6. Movement of the posterior teeth was tipped distally during maxillary six anterior teeth retraction using micro-im plant because of the friction between bracket and were Based on the results of this study, we could predict the pattern of the tooth movement according to position of micro-implant and height of anterior hook. It seems that we can find the force application point for proper tooth movement in consideration of inclination of anterior anterior teeth, periodontal condition, overjet and overbite

Three dimensional photoelastic study on the initial stress distributions of alveolar bone when retracted by lingual K-loop archwire (Lingual K-loop archwire를 이용한 발치공간 폐쇄시 초기응력 분포에 대한 3차원 광탄성학적 연구)

  • Byun, Bo-Ram;Kim, Sik-Sung;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.32 no.5 s.94
    • /
    • pp.343-353
    • /
    • 2002
  • This study was designed to investigate the stress distribution of alveolar bone in case of on masse retraction with lingual K-loop archwire using the 3-dimensional photoelastic stress analysis followed by stress freezing process. Lingual K-loop archwire which had loop in 15mm height was used and activated by retraction force of 350gm per each side. The results were as follows 1. Central incisor : As the closer side to crown, the larger tensile stress was distributed at both mesial and labial surfaces and the larger compressive stress was distributed at distal surface. As the closer side to root apex, the larger compressive stress was distributed at lingual surface. The compressive stress was distributed at root apex. 2. Lateral incisor : The tensile stress was distributed at the coronal side of mesial surface. The compressive stress was distributed at distal surface. As the closer side to crown, the larger tensile stress was distributed at labial surface. The tensile stress was distributed at coronal side and the compressive stress was distributed at apical side of lingual surface. The compressive stress was distributed at root apex. 3. Canine The tensile stress was distributed at coronal side and the compressive stress was distributed at apical side of mesial surface. The tensile stress was distributed at distal surface. As the closer side to crown, the larger tensile stress was distributed at both mesial and distal surfaces. The compressive stress was distributed at root apex. 4. Second premolar : The tensile stress was distributed at mesial surface. The compressive stress was distributed at coronal side and the tensile stress was distributed at apical side of distal surface. The compressive stress was distributed at coronal side of buccal surface. As the closer side to crown, the larger tensile stress was distributed at lingual surface. The compressive stress was distributed at root apex. 5. First molar . As the closer side to crown, the larger tensile stress was distributed at both mesial and distal surfaces. No stress was distributed at buccal surface and palatal root apex. As the closer side to crown, the larger tensile stress was distributed at both lingual surfaces. The compressive stress was distributed a4 buccal root apexes. 6. Second molar The compressive stress was distributed at all root apexes. As the closer side to crown, the larger compressive stress was distributed at both mesial and lingual surfaces, and the larger tensile stress at both distal and buccal surfaces. Transverse bowing effect was observed in on-masse retraction with lingual K-loop archwire, however vertical towing effect was not. Rather, reverse vortical bowing effect was developed.

Preliminary three-dimensional analysis of tooth movement and arch dimension change of the maxillary dentition in Class II division 1 malocclusion treated with first premolar extraction: conventional anchorage vs. mini-implant anchorage

  • Park, Heon-Mook;Kim, Byoung-Ho;Yang, Il-Hyung;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.42 no.6
    • /
    • pp.280-290
    • /
    • 2012
  • Objective: This study aimed to compare the effects of conventional and orthodontic mini-implant (OMI) anchorage on tooth movement and arch-dimension changes in the maxillary dentition in Class II division 1 (CII div.1) patients. Methods: CII div.1 patients treated with extraction of the maxillary first and mandibular second premolars and sliding mechanics were allotted to conventional anchorage group (CA, n = 12) or OMI anchorage group (OA, n = 12). Pre- and post-treatment three-dimensional virtual maxillary models were superimposed using the best-fit method. Linear, angular, and arch-dimension variables were measured with software program. Mann-Whitney U-test and Wilcoxon signed-rank test were performed for statistical analysis. Results: Compared to the CA group, the OMI group showed more backward movement of the maxillary central and lateral incisors and canine (MXCI, MXLI, MXC, respectively; 1.6 mm, p < 0.001; 0.9 mm, p < 0.05; 1.2 mm, p < 0.001); more intrusion of the MXCI and MXC (1.3 mm, 0.5 mm, all p < 0.01); less forward movement of the maxillary second premolar, first, and second molars (MXP2, MXM1, MXM2, respectively; all 1.0 mm, all p < 0.05); less contraction of the MXP2 and MXM1 (0.7 mm, p < 0.05; 0.9 mm, p < 0.001); less mesial-in rotation of the MXM1 and MXM2 ($2.6^{\circ}$, $2.5^{\circ}$, all p < 0.05); and less decrease of the inter-MXP2, MXM1, and MXM2 widths (1.8 mm, 1.5 mm, 2.0 mm, all p < 0.05). Conclusions: In treatment of CII div.1 malocclusion, OA provided better anchorage and less arch-dimension change in the maxillary posterior teeth than CA during en-masse retraction of the maxillary anterior teeth.

A STUDY ON THE CHANGES OF THE ELASTIC PROPERTIES TN LOOPED WIRES BY VARIABLE FACTORS (변환요소에 따른 LOOPED WIRE의 탄성 변화에 관한 연구)

  • Na, Yong-In;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.25 no.3 s.50
    • /
    • pp.263-271
    • /
    • 1995
  • The purpose of this study nab to evlauate and compare the effect of the variable factors of wire on the elastic properties of looped rectangular wire. Five variable factors were presented-material(Hi-T, blue Elgiloy), wire size(.016'$\;\times\;$.022', .018'$\;\times\;$.025'), loop length(15mm, 20mm), loop configuration(open loop, closed loop), gabling (non-gable, gable). So, the total 256 specimens were divided into 32 groups, and each of those nab pulled on Instron testing machine. The load-deflection curve of each wire obtained, from which force, range in elastic limit, and stiffness were computed and analyzed statistically. The results were obtained as follows : 1. All of the variable factors - wire material, size, loop length loop configuration, and gabling - took a significant effect on load-deflection rate of looped wire. 2. The force at elastic limit was the smallest in the group of Hi-T, .016'$\;\times\;$.022', 20mm loop length, open loop, non-gable, and the largest in the group of blue Elgiloy, .018'$\;\times\;$.025', 15mm loop length, closed loop, non-gable. 3. The range at elastic limit was the smallest in the group of Hi-T, .018'$\;\times\;$.025', 15mm loop length, open loop, non-gable, and the largest in the group of HI-T, .016'$\;\times\;$.022', 20mm loop length, closed loop, gable. 4. Loop configuration and loop length were the most effective factors on the elastic properties of looped wires, and gabling was the least effective.

  • PDF