• Title/Summary/Keyword: Candidate gene analysis

Search Result 400, Processing Time 0.024 seconds

Nitric Oxide-Induced Downregulation of a NAD(P)-Binding Rossmann-Fold Superfamily Gene Negatively Impacts Growth and Defense in Arabidopsis thaliana

  • Tiba Nazar Ibrahim Al Azawi;Murtaza Khan;Bong-Gyu Mun;Song-Uk Lee;Da-sol Lee;Waqas Rahim;Anjali Pande;Nusrat Jahan Methela;Cho-Jun Ho;Byung-Wook Yun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.143-143
    • /
    • 2022
  • Plant defense systems against pathogens have been studied extensively and are currently a hot topic in plant science. Using a reverse genetics technique, this study looked into the involvement of the NO-downregulated NAD(P)-binding Rossmann-fold superfamily gene in plant growth and defense in Arabidopsis thaliana. For this purpose, the knockout and overexpressing plant of the candidate gene along with the relevant controls were exposed to control, oxidative and nitro-oxidative stresses. The results showed that candidate gene negatively regulates plants' root and shoot lengths. To investigate the role of the candidate gene in plant basal defense, R-gene-mediated resistance and systemic acquired resistance (SAR) plants were challenged with virulent or avirulent strains of Pseudomonas syringae pathovar tomato (Psf) DC3000. The results showed that the candidate gene negatively regulates plants' basal defense, R-gene-mediated resistance and SAR. Further characterization via GO analysis associated the candidate gene with metabolic and cellular processes and response to light stimulus, nucleotide binding and cellular location in the cytosol and nucleus. Protein structure analysis indicated the presence of a canonical Oxidoreductase family NAD (P)-binding Rossmann fold domain of 120 amino acids with a total of 121 plant homologs across 35 different plant species in the clad streptophyta. Arabidopsis eFP browser showed its expression in almost all the above-ground parts. Protein analysis indicated C225 and C359 as potential targets for S-Nitrosylation by NO. SMART analysis indicated possible interactions with mevalonate/galactokinase, galacturonic acid kinase, arabinose kinase, putative xylulose kinase, GroES-like zinc-binding alcohol dehydrogenase and various glyceraldehyde-3-phosphate dehydrogenases.

  • PDF

Association of SNP Marker in IGF-I and MYF5 Candidate Genes with Growth Traits in Korean Cattle

  • Chung, E.R.;Kim, W.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1061-1065
    • /
    • 2005
  • Growth rate is one of the economically important quantitative traits that affect carcass quantity in beef cattle. Two genes, bovine insulin-like growth factor I (IGF-I) and myogenic factor 5 (MYF5), were chosen as candidate genes for growth traits due to their important role in growth and development of mammals. The objectives of this study were to determine gene-specific single nucleotide polymorphism (SNP) markers of the IGF-I and MYF5 positional candidate genes and to investigate their associations with growth traits in Korean cattle. Genotyping of the SNP markers in these candidate genes was carried out using the single strand conformation polymorphism (SSCP) analysis. The frequencies of A and B alleles were 0.72 and 0.28 for IGF-I gene and 0.39 and 0.61 for MYF5 gene, respectively, in Korean cattle population examined. The gene-specific SNP marker association analysis indicated that the SNP genotype in IGF-I gene showed a significant association (p<0.05) with weight at 3 months (W3), and cows with AB genotype had higher W3 than BB genotype cows. The SNP genotype of MYF5 gene was found to have a significant effect (p<0.05) on the weight at 12 months (W12) and average daily gain (ADG), and cows with BB and AB genotypes had higher W12 and ADG compared with cows with AA genotype, respectively. However, no significant association between the SNP genotypes and any other growth traits was detected. The gene-specific SNP markers in the IGF-I and MYF5 candidate genes may be useful for selection on growth traits in Korean cattle.

Gene Co-Expression Network Analysis of Reproductive Traits in Bovine Genome

  • Lim, Dajeong;Cho, Yong-Min;Lee, Seung-Hwan;Chai, Han-Ha;Kim, Tae-Hun
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.185-192
    • /
    • 2013
  • Many countries have implemented genetic evaluation for fertility traits in recent years. In particular, reproductive trait is a complex trait and need to require a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with reproductive trait, we applied a weighted gene co-expression network analysis from expression value of bovine genes. We identified three co-expressed modules associated with reproductive trait from bovine microarray data. Hub genes (ZP4, FHL2 and EGR4) were determined in each module; they were topologically centered with statistically significant value in the gene co-expression network. We were able to find the highly co-expressed gene pairs with a correlation coefficient. Finally, the crucial functions of co-expressed modules were reported from functional enrichment analysis. We suggest that the network-based approach in livestock may an important method for analyzing the complex effects of candidate genes associated with economic traits like reproduction.

Genetic Variations in Six Candidate Genes for Insulin Resistance in Korean Essential Hypertensives

  • Bae, Joon-Seol;Kang, Byung-Yong;Kim, Ki-Tae;Shin, Jung-Hee;Lee, Chung-Choo
    • Animal cells and systems
    • /
    • v.5 no.4
    • /
    • pp.341-346
    • /
    • 2001
  • Hypertension is a complex disease with strong genetic influences. Essential hypertension has been shown to be associated with insulin resistance. To clarify the genetic basis of insulin resistance in Hypertension, case-control association studies were performed to examine candidate genes for insulin resistance in hypertension. Polymorphisms investigated were the BstO I polymorphism of the $\beta$3-adrenergic receptor (ADRB3) gene, the Xba I Polymorphism of the glycogen synthase (GSY) gene, the Dde I polymorphism of the protein phosphatase 1 G subuit (PP1G) gene, the BstE II polymorphism of the glucagon receptor (GCG-R) gene, the Pst 1 polymorphism of the insulin (INS) gene and the Acc I polymorphism of the glucokinase (GCK) gene. No significant differences were observed in the distribution of alleles and genotypes of the ADRB3, GSY PP1G, GCG-R, INS, and GCK genes between hypertensive and normotensive groups. Although the frequencies in each of these polymorphisms were not significantly different between essential hypertensive and normotensive individuals, our results may provide additional information for linkage analysis and associative studies of disorders in carbohydrate metabolism or in cardiovascular disease.

  • PDF

StrokeBase: A Database of Cerebrovascular Disease-related Candidate Genes

  • Kim, Young-Uk;Kim, Il-Hyun;Bang, Ok-Sun;Kim, Young-Joo
    • Genomics & Informatics
    • /
    • v.6 no.3
    • /
    • pp.153-156
    • /
    • 2008
  • Complex diseases such as stroke and cancer have two or more genetic loci and are affected by environmental factors that contribute to the diseases. Due to the complex characteristics of these diseases, identifying candidate genes requires a system-level analysis of the following: gene ontology, pathway, and interactions. A database and user interface, termed StrokeBase, was developed; StrokeBase provides queries that search for pathways, candidate genes, candidate SNPs, and gene networks. The database was developed by using in silico data mining of HGNC, ENSEMBL, STRING, RefSeq, UCSC, GO, HPRD, KEGG, GAD, and OMIM. Forty candidate genes that are associated with cerebrovascular disease were selected by human experts and public databases. The networked cerebrovascular disease gene maps also were developed; these maps describe genegene interactions and biological pathways. We identified 1127 genes, related indirectly to cerebrovascular disease but directly to the etiology of cerebrovascular disease. We found that a protein-protein interaction (PPI) network that was associated with cerebrovascular disease follows the power-law degree distribution that is evident in other biological networks. Not only was in silico data mining utilized, but also 250K Affymetrix SNP chips were utilized in the 320 control/disease association study to generate associated markers that were pertinent to the cerebrovascular disease as a genome-wide search. The associated genes and the genes that were retrieved from the in silico data mining system were compared and analyzed. We developed a well-curated cerebrovascular disease-associated gene network and provided bioinformatic resources to cerebrovascular disease researchers. This cerebrovascular disease network can be used as a frame of systematic genomic research, applicable to other complex diseases. Therefore, the ongoing database efficiently supports medical and genetic research in order to overcome cerebrovascular disease.

Association of Sequence Variations in DGAT 1 Gene with Economic Traits in Hanwoo (Korea Cattle)

  • Kong, H.S.;Oh, J.D.;Lee, J.H.;Yoon, D.H.;Choi, Y.H.;Cho, B.W.;Lee, H.K.;Jeon, G.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.817-820
    • /
    • 2007
  • The effects of diacylglycerol O-acyltransferase (DGAT1) candidate gene polymorphism on the economic traits of Hanwoo were studied. Through sequencing analysis, two polymorphism sites at K232A and T11993C were established and were analyzed by PCR-RFLP. The PCR-RFLP analysis for K232A showed that the frequencies of alleles K and A were 0.75 and 0.25, respectively, and the frequencies of genotypes for K/K, K/A and A/A were estimated as 0.509, 0.491 and 0, respectively. In the PCR-RFLP analysis for T11993C, we found allele frequencies of 0.773 and 0.227 for T and A, respectively, and 0.546, 0.454 and 0 for the T/T, T/C and C/C genotype frequencies, respectively. No significant effects on economic traits in Hanwoo were found in the separate analysis of K232A and T11993C polymorphisms, but the interaction between K232A and T11993C showed a significant effect (p<0.005) on marbling score. The DGAT1 candidate gene was found to have a significant effect not only on milk yield and component traits but also on the metabolism of intramuscular fat.

Candidate Marker Identification from Gene Expression Data with Attribute Value Discretization and Negation (속성값 이산화 및 부정값 허용을 하는 의사결정트리 기반의 유전자 발현 데이터의 마커 후보 식별)

  • Lee, Kyung-Mi;Lee, Keon-Myung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.575-580
    • /
    • 2011
  • With the increasing expectation on personalized medicine, it is getting importance to analyze medical information in molecular biology perspective. Gene expression data are one of representative ones to show the microscopic phenomena of biological activities. In gene expression data analysis, one of major concerns is to identify markers which can be used to predict disease occurrence, progression or recurrence in the molecular level. Existing markers candidate identification methods mainly depend on statistical hypothesis test methods. This paper proposes a search method based decision tree induction to identify candidate markers which consist of multiple genes. The propose method discretizes numeric expression level into three categorical values and allows candidate markers' genes to be expressed by their negation as well as categorical values. It is desirable to have some number of genes to be included in markers. Hence the method is devised to try to find candidate markers with restricted number of genes.

Functional Prediction of Imprinted Genes in Chicken Based on a Mammalian Comparative Expression Network

  • Kim, Hyo-Young;Moon, Sun-Jin;Kim, Hee-Bal
    • Genomics & Informatics
    • /
    • v.6 no.1
    • /
    • pp.32-35
    • /
    • 2008
  • Little evidence supports the existence of imprinted genes in chicken. Imprinted genes are thought to be intimately connected with the acquisition of parental resources in mammals; thus, the predicted lack of this type of gene in chicken is not surprising, given that they leave their offspring to their own heritance after conception. In this study, we identified several imprinted genes and their orthologs in human, mouse, and zebrafish, including 30 previously identified human and mouse imprinted genes. Next, using the HomoloGene database, we identified six orthologous genes in human, mouse, and chicken; however, no orthologs were identified for SLC22A18, and mouse Ppp1r9a was not included in the HomoloGene database. Thus, from our analysis, four candidate chicken imprinted genes (IGF2, UBE3A, PHLDA2, and GRB10) were identified. To expand our analysis, zebrafish was included, but no probe ID for UBE3A exists in this species. Thus, ultimately, three candidate imprinted genes (IGF2, PHLDA2, and GRB10) in chicken were identified. GRB10 was not significant in chicken and zebrafish based on the Wilcoxon-Mann-Whitney test, whereas a weak correlation between PHLDA2 in chicken and human was identified from the Spearman's rank correlation coefficient. Significant associations between human, mouse, chicken, and zebrafish were found for IGF2 and GRB10 using the Friedman's test. Based on our results, IGF2, PHLDA2, and GRB10 are candidate imprinted genes in chicken. Importantly, the strongest candidate was PHLDA2.

Whole-exome sequencing analysis in a case of primary congenital glaucoma due to the partial uniparental isodisomy

  • Zavarzadeh, Parisima Ghaffarian;Bonyadi, Morteza;Abedi, Zahra
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.28.1-28.7
    • /
    • 2022
  • We described a clinical, laboratory, and genetic presentation of a pathogenic variant of the CYP1B1 gene through a report of a case of primary congenital glaucoma and a trio analysis of this candidate variant in the family with the Sanger sequencing method and eventually completed our study with the secondary/incidental findings. This study reports a rare case of primary congenital glaucoma, an 8-year-old female child with a negative family history of glaucoma and uncontrolled intraocular pressure. This case's whole-exome sequencing data analysis presents a homozygous pathogenic single nucleotide variant in the CYP1B1 gene (NM_000104:exon3:c.G1103A:p.R368H). At the same time, this pathogenic variant was obtained as a heterozygous state in her unaffected father but not her mother. The diagnosis was made based on molecular findings of whole-exome sequencing data analysis. Therefore, the clinical reports and bioinformatics findings supported the relation between the candidate pathogenic variant and the disease. However, it should not be forgotten that primary congenital glaucoma is not peculiar to the CYP1B1 gene. Since the chance of developing autosomal recessive disorders with low allele frequency and unrelated parents is extraordinary in offspring. However, further data analysis of whole-exome sequencing and Sanger sequencing method were applied to obtain the type of mutation and how it was carried to the offspring.