• Title/Summary/Keyword: Candidate Images

Search Result 415, Processing Time 0.029 seconds

Character Extraction of Car License Plates using RGB Color Information and Fuzzy Binarization (RGB 컬러 정보와 퍼지 이진화를 이용한 차량 번호판의 개별 문자 추출)

  • 김광백;김문환;노영욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.80-87
    • /
    • 2004
  • In this paper we proposed the novel feature extraction method that is able to extract the individual characters from the license plate area of the car image more precisely by using the RGB color information and the fuzzy binarization newly proposed. The proposed method, first, extracts from the original image the areas that the pixels with the colors around the green are concentrated on as the candidate areas of the license plate, and selects the area with the most intensive distribution of pixels with the white color among the candidate areas as the license plate area. Second the noises of the license plate area should be removed by using 34{\times}$3 Sobel masking, and the fuzzy binarization method are proposed and applied to the license plate area to generate the binarized image of the license plate area. Lastly, the application of the contour tracking algorithm to the binarized area extracts the individual characters from the license plate area. The experiment on a variety of the real car images showed that the proposed method generates the higher rate of success for character extraction than the previous methods.

Natural Scene Text Binarization using Tensor Voting and Markov Random Field (텐서보팅과 마르코프 랜덤 필드를 이용한 자연 영상의 텍스트 이진화)

  • Choi, Hyun Su;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.18-23
    • /
    • 2015
  • In this paper, we propose a method for detecting the number of clusters. This method can improve the performance of a gaussian mixture model function in conventional markov random field method by using the tensor voting. The key point of the proposed method is that extracts the number of the center through the continuity of saliency map of the input data of the tensor voting token. At first, we separate the foreground and background region candidate in a given natural images. After that, we extract the appropriate cluster number for each separate candidate regions by applying the tensor voting. We can make accurate modeling a gaussian mixture model by using a detected number of cluster. We can return the result of natural binary text image by calculating the unary term and the pairwise term of markov random field. After the experiment, we can confirm that the proposed method returns the optimal cluster number and text binarization results are improved.

Development of a Recognition System of Smile Facial Expression for Smile Treatment Training (웃음 치료 훈련을 위한 웃음 표정 인식 시스템 개발)

  • Li, Yu-Jie;Kang, Sun-Kyung;Kim, Young-Un;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.47-55
    • /
    • 2010
  • In this paper, we proposed a recognition system of smile facial expression for smile treatment training. The proposed system detects face candidate regions by using Haar-like features from camera images. After that, it verifies if the detected face candidate region is a face or non-face by using SVM(Support Vector Machine) classification. For the detected face image, it applies illumination normalization based on histogram matching in order to minimize the effect of illumination change. In the facial expression recognition step, it computes facial feature vector by using PCA(Principal Component Analysis) and recognizes smile expression by using a multilayer perceptron artificial network. The proposed system let the user train smile expression by recognizing the user's smile expression in real-time and displaying the amount of smile expression. Experimental result show that the proposed system improve the correct recognition rate by using face region verification based on SVM and using illumination normalization based on histogram matching.

Automatic Extraction Method of Control Point Based on Geospatial Web Service (지리공간 웹 서비스 기반의 기준점 자동추출 기법 연구)

  • Lee, Young Rim
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.2
    • /
    • pp.17-24
    • /
    • 2014
  • This paper proposes an automatic extraction method of control point based on Geospatial Web Service. The proposed method consists of 3 steps. 1) The first step is to acquires reference data using the Geospatial Web Service. 2) The second step is to finds candidate control points in reference data and the target image by SURF algorithm. 3) By using RANSAC algorithm, the final step is to filters the correct matching points of candidate control points as final control points. By using the Geospatial Web Service, the proposed method increases operation convenience, and has the more extensible because of following the OGC Standard. The proposed method has been tested for SPOT-1, SPOT-5, IKONOS satellite images and has been used military standard data as reference data. The proposed method yielded a uniform accuracy under RMSE 5 pixel. The experimental results proved the capabilities of continuous improvement in accuracy depending on the resolution of target image, and showed the full potential of the proposed method for military purpose.

Segmentation and Recognition of Traffic Signs using Shape Information and Edge Image in Real Image (실영상에서 형태 정보와 에지 영상을 이용한 교통 표지판 영역 추출과 인식)

  • Kwak, Hyun-Wook;Oh,Jun-Taek;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.149-158
    • /
    • 2004
  • This study proposes a method for segmentation and recognition of traffic signs using shape information and edge image in real image. It first segments traffic sign candidate regions by connected component algorithm from binary images, obtained by utilizing the RGB color ratio of each pixel in the image, and then extracts actual traffic signs based on their symmetries on X- and Y-axes. Histogram equalization is performed for unsegmented candidate regions caused by low contrast in the image. In the recognition stage, it utilizes shape information including projection profiles on X- and Y-axes, moment, and the number of crossings and distance which concentric circular patterns and 8-directional rays from region center intersects with edges of traffic signs. It finally performs recognition by measuring similarity with the templates in the database. It will be shown from several experimental results that the system is robust to environmental factors, such as light and weather condition.

3D Terrain Analysis and Suitability Analysis Using KOMPSAT 2 Satellite Images (아리랑2호 영상을 이용한 3차원지형 분석 및 적지분석)

  • Han, seung-hee;Lee, jin-duk
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.436-440
    • /
    • 2008
  • Complete consideration on condition and surrounding environment shall be performed to select proper location for complex planning or establishment of facility with special purpose. Especially, in case of living space for human, lighting, ventilation, efficiency in land use, etc. are important elements. Diverse 3D analysis through 3D topography modeling and virtual simulation is necessary for this. Now, it can be processed with relatively inexpensive cost since high resolution satellite image essential in topography modeling is provided with domestic technology through Arirang No. 2 satellite (KOMPSAT2). In this study, several candidate sites is selected for complex planning with special purpose and analysis on proper location was performed using the 3D topography modeling and land information. For this, land analysis, land price calculation, slope analysis and aspect analysis have been carried out. As a result of arranging the evaluation index for each candidate site and attempting the quantitative evaluation, proper location could be selected efficiently and reasonably.

  • PDF

Implementation of Preceding Vehicle Break-Lamp Detection System using Selective Attention Model and YOLO (선택적 주의집중 모델과 YOLO를 이용한 선행 차량 정지등 검출 시스템 구현)

  • Lee, Woo-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.2
    • /
    • pp.85-90
    • /
    • 2021
  • A ADAS(Advanced Driver Assistance System) for the safe driving is an important area in autonumous car. Specially, a ADAS software using an image sensors attached in previous car is low in building cost, and utilizes for various purpose. A algorithm for detecting the break-lamp from the tail-lamp of preceding vehicle is proposed in this paper. This method can perceive the driving condition of preceding vehicle. Proposed method uses the YOLO techinicque that has a excellent performance in object tracing from real scene, and extracts the intensity variable region of break-lamp from HSV image of detected vehicle ROI(Region Of Interest). After detecting the candidate region of break-lamp, each isolated region is labeled. The break-lamp region is detected finally by using the proposed selective-attention model that percieves the shape-similarity of labeled candidate region. In order to evaluate the performance of the preceding vehicle break-lamp detection system implemented in this paper, we applied our system to the various driving images. As a results, implemented system showed successful results.

Far Distance Face Detection from The Interest Areas Expansion based on User Eye-tracking Information (시선 응시 점 기반의 관심영역 확장을 통한 원 거리 얼굴 검출)

  • Park, Heesun;Hong, Jangpyo;Kim, Sangyeol;Jang, Young-Min;Kim, Cheol-Su;Lee, Minho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.113-127
    • /
    • 2012
  • Face detection methods using image processing have been proposed in many different ways. Generally, the most widely used method for face detection is an Adaboost that is proposed by Viola and Jones. This method uses Haar-like feature for image learning, and the detection performance depends on the learned images. It is well performed to detect face images within a certain distance range, but if the image is far away from the camera, face images become so small that may not detect them with the pre-learned Haar-like feature of the face image. In this paper, we propose the far distance face detection method that combine the Aadaboost of Viola-Jones with a saliency map and user's attention information. Saliency Map is used to select the candidate face images in the input image, face images are finally detected among the candidated regions using the Adaboost with Haar-like feature learned in advance. And the user's eye-tracking information is used to select the interest regions. When a subject is so far away from the camera that it is difficult to detect the face image, we expand the small eye gaze spot region using linear interpolation method and reuse that as input image and can increase the face image detection performance. We confirmed the proposed model has better results than the conventional Adaboost in terms of face image detection performance and computational time.

Scene Text Extraction in Natural Images using Hierarchical Feature Combination and Verification (계층적 특징 결합 및 검증을 이용한 자연이미지에서의 장면 텍스트 추출)

  • 최영우;김길천;송영자;배경숙;조연희;노명철;이성환;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.420-438
    • /
    • 2004
  • Artificially or naturally contained texts in the natural images have significant and detailed information about the scenes. If we develop a method that can extract and recognize those texts in real-time, the method can be applied to many important applications. In this paper, we suggest a new method that extracts the text areas in the natural images using the low-level image features of color continuity. gray-level variation and color valiance and that verifies the extracted candidate regions by using the high-level text feature such as stroke. And the two level features are combined hierarchically. The color continuity is used since most of the characters in the same text lesion have the same color, and the gray-level variation is used since the text strokes are distinctive in their gray-values to the background. Also, the color variance is used since the text strokes are distinctive in their gray-values to the background, and this value is more sensitive than the gray-level variations. The text level stroke features are extracted using a multi-resolution wavelet transforms on the local image areas and the feature vectors are input to a SVM(Support Vector Machine) classifier for the verification. We have tested the proposed method using various kinds of the natural images and have confirmed that the extraction rates are very high even in complex background images.

Vehicle Area Segmentation from Road Scenes Using Grid-Based Feature Values (격자 단위 특징값을 이용한 도로 영상의 차량 영역 분할)

  • Kim Ku-Jin;Baek Nakhoon
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1369-1382
    • /
    • 2005
  • Vehicle segmentation, which extracts vehicle areas from road scenes, is one of the fundamental opera tions in lots of application areas including Intelligent Transportation Systems, and so on. We present a vehicle segmentation approach for still images captured from outdoor CCD cameras mounted on the supporting poles. We first divided the input image into a set of two-dimensional grids and then calculate the feature values of the edges for each grid. Through analyzing the feature values statistically, we can find the optimal rectangular grid area of the vehicle. Our preprocessing process calculates the statistics values for the feature values from background images captured under various circumstances. For a car image, we compare its feature values to the statistics values of the background images to finally decide whether the grid belongs to the vehicle area or not. We use dynamic programming technique to find the optimal rectangular gird area from these candidate grids. Based on the statistics analysis and global search techniques, our method is more systematic compared to the previous methods which usually rely on a kind of heuristics. Additionally, the statistics analysis achieves high reliability against noises and errors due to brightness changes, camera tremors, etc. Our prototype implementation performs the vehicle segmentation in average 0.150 second for each of $1280\times960$ car images. It shows $97.03\%$ of strictly successful cases from 270 images with various kinds of noises.

  • PDF