• Title/Summary/Keyword: Candidate Images

Search Result 415, Processing Time 0.036 seconds

Robust Coronary Artery Segmentation in 2D X-ray Images using Local Patch-based Re-connection Methods (지역적 패치기반 보정기법을 활용한 2D X-ray 영상에서의 강인한 관상동맥 재연결 기법)

  • Han, Kyunghoon;Jeon, Byunghwan;Kim, Sekeun;Jang, Yeonggul;Jung, Sunghee;Shim, Hackjoon;Chang, Hyukjae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.592-601
    • /
    • 2019
  • For coronary procedures, X-ray angiogram images are useful for diagnosing and assisting procedures. It is challenging to accurately segment a coronary artery using only a single segmentation model in 2D X-ray images due to a complex structure of three-dimensional coronary artery, especially from phenomenon of vessels being broken in the middle or end of coronary artery. In order to solve these problems, the initial segmentation is performed using an existing single model, and the candidate regions for the sophisticate correction is estimated based on the initial segment, and the local patch-based correction is performed in the candidate regions. Through this research, not only the broken coronary arteries are re-connected, but also the distal part of coronary artery that is very thin is additionally correctly found. Further, the performance can be much improved by combining the proposed correction method with any existing coronary artery segmentation method. In this paper, the U-net, a fully convolutional network was chosen as a segmentation method and the proposed correction method was combined with U-net to demonstrate a significant improvement in performance through X-ray images from several patients.

Image Segmentation based on Statistics of Sequential Frame Imagery of a Static Scene (정지장면의 연속 프레임 영상 간 통계에 기반한 영상분할)

  • Seo, Su-Young;Ko, In-Chul
    • Spatial Information Research
    • /
    • v.18 no.3
    • /
    • pp.73-83
    • /
    • 2010
  • This study presents a method to segment an image, employing the statistics observed at each pixel location across sequential frame images. In the acquisition and analysis of spatial information, utilization of digital image processing technique has very important implications. Various image segmentation techniques have been presented to distinguish the area of digital images. In this study, based on the analysis of the spectroscopic characteristics of sequential frame images that had been previously researched, an image segmentation method was proposed by using the randomness occurring among a sequence of frame images for a same scene. First of all, we computed the mean and standard deviation values at each pixel and found reliable pixels to determine seed points using their standard deviation value. For segmenting an image into individual regions, we conducted region growing based on a T-test between reference and candidate sample sets. A comparative analysis was conducted to assure the performance of the proposed method with reference to a previous method. From a set of experimental results, it is confirmed that the proposed method using a sequence of frame images segments a scene better than a method using a single frame image.

A Novel Sub-image Retrieval Approach using Dot-Matrix (점 행렬을 이용한 새로운 부분 영상 검색 기법)

  • Kim, Jun-Ho;Kang, Kyoung-Min;Lee, Do-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1330-1336
    • /
    • 2012
  • The Image retrieval has been study different approaches which are text-based, contents-based, area-based method and sub-image finding. The sub-image retrieval is to find a query image in the target one. In this paper, we propose a novel sub-image retrieval algorithm by Dot-Matrix method to be used in the bioinformatics. Dot-Matrix is a method to evaluate similarity between two sequences and we redefine the problem for retrieval of sub-image to the finding similarity of two images. For the approach, the 2 dimensional array of image converts a the vector which has gray-scale value. The 2 converted images align by dot-matrix and the result shows candidate sub-images. We used 10 images as target and 5 queries: duplicated, small scaled, and large scaled images included x-axes and y-axes scaled one for experiment.

Text Region Extraction using Pattern Histogram of Character-Edge Map in Natural Images (문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에서의 텍스트 영역 추출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Kwon, Kyo-Hyun;Jun, Byoung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.220-224
    • /
    • 2006
  • The text to be included in the natural images has many important information in the natural image. Therefore, if we can extract the text in natural images, It can be applied to many important applications. In this paper, we propose a text region extraction method using pattern histogram of character-edge map. We extract the edges with the Canny edge detector and creates 16 kind of edge map from an extracted edges. And then we make a character-edge map of 8 kinds that have a character feature with a combination of an edge map. We extract text region using 8 kinds of character-edge map and 16 kind of edge map. Verification of text candidate region uses analysis of a character-edge map pattern histogram and structural feature of text region. The method to propose experimented with various kind of the natural images. The proposed approach extracted text region from a natural images to have been composed of a complex background, various letters, various text colors effectively.

  • PDF

A Real-time Pedestrian Detection based on AGMM and HOG for Embedded Surveillance

  • Nguyen, Thanh Binh;Nguyen, Van Tuan;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1289-1301
    • /
    • 2015
  • Pedestrian detection (PD) is an essential task in various applications and sliding window-based methods utilizing HOG (Histogram of Oriented Gradients) or HOG-like descriptors have been shown to be very effective for accurate PD. However, due to exhaustive search across images, PD methods based on sliding window usually require heavy computational time. In this paper, we propose a real-time PD method for embedded visual surveillance with fixed backgrounds. The proposed PD method employs HOG descriptors as many PD methods does, but utilizes selective search so that it can save processing time significantly. The proposed selective search is guided by restricting searching to candidate regions extracted from Adaptive Gaussian Mixture Model (AGMM)-based background subtraction technique. Moreover, approximate computation of HOG descriptor and implementation in fixed-point arithmetic mode contributes to reduction of processing time further. Possible accuracy degradation due to approximate computation is compensated by applying an appropriate one among three offline trained SVM classifiers according to sizes of candidate regions. The experimental results show that the proposed PD method significantly improves processing speed without noticeable accuracy degradation compared to the original HOG-based PD and HOG with cascade SVM so that it is a suitable real-time PD implementation for embedded surveillance systems.

QR-code finder recognition using four directional scanning method (네 방향 스캔 방법을 이용한 QR코드 파인더 인식)

  • Lee, Yeon-Kyung;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1187-1192
    • /
    • 2012
  • This paper describes a method to detect QR-code finders by four-direction scanning. The finder recognition is the first step in the QR-code recognition. If the finder is missing, QR-code recognition fails. The existing QR-code recognition method has a problem that the recognition performance decreases for perspectively distored images. To overcome the problem, we introduce four-direction scanning and a candidate set image to accurately detect QR-code finders. Using morphological operations detect the QR-code finder in the candidate set image robustly. To show the effectiveness of our method, we compared our method with the well-known existing method. The experimental result indicates that the proposed method is superior to the existing method in terms of the finder recognition performance.

Feature Matching Algorithm Robust To Noise (잡음에 강인한 특징점 정합 기법)

  • Jung, Hyunjo;Yoo, Jisang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.9-12
    • /
    • 2015
  • In this paper, we propose a new feature matching algorithm by modifying and combining the FAST(Features from Accelerated Segment Test) feature detector and SURF feature descriptor which is robust to the distortion of the given image. Scale space is generated to consider the variation of the scale and determine the candidate of features in the image robust to the noise. The original FAST algorithm results in many feature points along edges. To solve this problem, we apply the principal curvatures for refining it. We also use SURF descriptor to make it robust against the variations in the image by rotation. Through the experiments, it is shown that the proposed algorithm has better performance than the conventional feature matching algorithms even though it has much less computational load. Especially, it shows a strength for noisy images.

  • PDF

A Robust Power Transmission Lines Detection Method Based on Probabilistic Estimation of Vanishing Point (확률적인 소실점 추정 기법에 기반한 강인한 송전선 검출 방법)

  • Yoo, Ju Han;Kim, Dong Hwan;Lee, Seok;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • We present a robust power transmission lines detection method based on vanishing point estimation. Vanishing point estimation can be helpful to detect power transmission lines because parallel lines converge on the vanishing point in a projected 2D image. However, it is not easy to estimate the vanishing point correctly in an image with complex background. Thus, we first propose a vanishing point estimation method on power transmission lines by using a probabilistic voting procedure based on intersection points of line segments. In images obtained by our system, power transmission lines are located in a fan-shaped area centered on this estimated vanishing point, and therefore we select the line segments that converge to the estimated vanishing point as candidate line segments for power transmission lines only in this fan-shaped area. Finally, we detect the power transmission lines from these candidate line segments. Experimental results show that the proposed method is robust to noise and efficient to detect power transmission lines.

A Fire Detection Using Color and Movement of Flames (화염의 칼라와 움직임을 이용한 화재감지)

  • Cho, KyoungLae;Bae, Sung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2014
  • In this paper, we propose a new fire detection method using moving features and colors of flames in video sequences. It uses YCbCr color space to separate the luminance from the chrominance components more effectively than RGB color space. In the proposed method, moving regions of flames are detected by cumulating the difference of luminance between two consecutive images and generate candidate flame regions by using the color of flames. Finally, it decides whether the candidate flame regions are flames or not by using their temporal changes of the areas. Experimental results show that the proposed method performs better in segmenting fire regions compared with the conventional fire detection method in video sequences.

Object-Based Image Retrieval Using Color Adjacency and Clustering Method (컬러 인접성과 클러스터링 기법을 이용한 객체 기반 영상 검색)

  • Lee Hyung-Jin;Park Ki-Tae;Moon Young-Shik
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.31-38
    • /
    • 2005
  • This paper proposes an object-based image retrieval scheme using color adjacency and clustering method. Color adjacency features in boundary regions are utilized to extract candidate blocks of interest from image database and a clustering method is used to extract the regions of interest(ROI) from candidate blocks of interest. To measure the similarity between the query and database images, the histogram intersection technique is used. The color pair information used in the proposed method is robust against translation, rotation, and scaling. Consequently, experimental results have shown that the proposed scheme is superior to existing methods in terms of ANMRR.