• Title/Summary/Keyword: Candida molischiana

Search Result 2, Processing Time 0.02 seconds

Comparison of Bioethanol Production by Candida molischiana and Saccharomyces cerevisiae from Glucose, Cellobiose, and Cellulose

  • Zheng, Jianning;Negi, Abhishek;Khomlaem, Chanin;Kim, Beom Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.905-912
    • /
    • 2019
  • Bioethanol has attracted much attention in recent decades as a sustainable and environmentally friendly alternative energy source. In this study, we compared the production of bioethanol by Candida molischiana and Saccharomyces cerevisiae at different initial concentrations of cellobiose and glucose. The results showed that C. molischiana can utilize both glucose and cellobiose, whereas S. cerevisiae can only utilize glucose. The ethanol yields were 43-51% from different initial concentrations of carbon source. In addition, different concentrations of microcrystalline cellulose (Avicel) were directly converted to ethanol by a combination of Trichoderma reesei and two yeasts. Cellulose was first hydrolyzed by a fully enzymatic saccharification process using T. reesei cellulases, and the reducing sugars and glucose produced during the process were further used as carbon source for bioethanol production by C. molischiana or S. cerevisiae. Sequential culture of T. reesei and two yeasts revealed that C. molischiana was more efficient for bioconversion of sugars to ethanol than S. cerevisiae. When 20 g/l Avicel was used as a carbon source, the maximum reducing sugar, glucose, and ethanol yields were 42%, 26%, and 20%, respectively. The maximum concentrations of reducing sugar, glucose, and ethanol were 10.9, 8.57, and 5.95 g/l, respectively, at 120 h by the combination of T. reesei and C. molischiana from 50 g/l Avicel.

Studies on the Production of Microbial Cell Protein from Hydrocarbon (탄화수소로부터 균체단백질의 생산에 관한 연구)

  • 정동효;박준희
    • Microbiology and Biotechnology Letters
    • /
    • v.6 no.4
    • /
    • pp.173-179
    • /
    • 1978
  • 1) To study the productivity of single cell protein from the n-paraffin utilizing yeast, 235 yeast strains were isolatea from 90 samples 2) Optimum cell growth temperature of three strains selected was 40~45$^{\circ}C$ and these were identified as Candida tropicalis, Candida krusei and Torulopsis molischiana. 3) A-28 strain easily assimilated tetradecane, hexadecane and octadecane, but B-8 strain and C-15 strain assimilated more hexadecane than other n-paraffins. 4) Out of the selected three strains, the mass doubling time, specific growth rate and cell yield were 3.4~4.0 hours, 0.170~0.215, 86~98%, respectively. 5) Crude protein, fat, fiber, ash and nitrogen free extract of the selected three strains were found to be 48.2~61.2% 3.7~8.0%, 3.5~4.2%, 5.6~6.7%, 23.5~31.8%, respectively, and thiamine and riboflavin contents of dried yeast cell were 0.78~0.93 mg% and 6.03~7.3 mg%, respectively. 6) Yeast protein contained evenly most of amino acid, but the sulfur-containing amino acids were particularly low.

  • PDF