• 제목/요약/키워드: Cancer mutation

검색결과 460건 처리시간 0.026초

Cytogenetic and Genetic Mutation Features of de novo Acute Myeloid Leukemia in Elderly Chinese Patients

  • Su, Long;Li, Xian;Gao, Su-Jun;Yu, Ping;Liu, Xiao-Liang;Tan, Ye-Hui;Liu, Ying-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.895-898
    • /
    • 2014
  • Objectives: The present study aimed to examine the cytogenetic and genetic mutation features of acute myeloid leukemia (AML) in elderly Chinese patients. Methods: A retrospective analysis of cytogenetics and genetic mutations was performed in 113 cases (age range 50-82 years) with de novo AML. Results: The most frequent cytogenetic abnormality was t (15;17) (q22;q21), detected in 10.0% (n = 9) of successfully analyzed cases, followed by t (8;21) (q22;q22) in 8.89% (n = 8), and complex karyotypes in 5.56% (n = 5). Those with complex karyotypes included 4 cases (4.44%) of monosomal karyotypes. The frequencies of NPM1, FLT3-ITD, c-kit, and CEBPA mutations were 27.4% (31/113), 14.5% (16/110), 5.88% (6/102), and 23.3% (7/30), respectively. The complete remission rates of patients in low, intermediate, and high risk groups were 37.5%, 48.6%, and 33.3%, respectively (${\chi}^2$ = 0.704, P = 0.703) based on risk stratification. Conclusion: Cytogenetics and genetic mutations alone may not be sufficient to evaluate the prognoses of elderly AML patients. The search for a novel model that would enable a more comprehensive evaluation of this population is therefore imperative.

Radiation-induced Tumorigenesis

  • Kim, In-Gyu;Lee, Yun-Sil
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.144-148
    • /
    • 2003
  • During the past 2 decades, radiation tumorigenesis researchers have focused on cellular and molecular mechanisms. We reviewed some of these research fields, since they may specifically relate to the induction of cancer by ionizing radiation. First, radiation-mediated mutation was discussed. Then the initiating event in radiation carcinogenesis, as well as other genetic events that may by involved, is discussed in terms of the possible role of the activation of genes and the loss of cell-cycle checkpoints.

Bioinformatics Interpretation of Exome Sequencing: Blood Cancer

  • Kim, Jiwoong;Lee, Yun-Gyeong;Kim, Namshin
    • Genomics & Informatics
    • /
    • 제11권1호
    • /
    • pp.24-33
    • /
    • 2013
  • We had analyzed 10 exome sequencing data and single nucleotide polymorphism chips for blood cancer provided by the PGM21 (The National Project for Personalized Genomic Medicine) Award program. We had removed sample G06 because the pair is not correct and G10 because of possible contamination. In-house software somatic copy-number and heterozygosity alteration estimation (SCHALE) was used to detect one loss of heterozygosity region in G05. We had discovered 27 functionally important mutations. Network and pathway analyses gave us clues that NPM1, GATA2, and CEBPA were major driver genes. By comparing with previous somatic mutation profiles, we had concluded that the provided data originated from acute myeloid leukemia. Protein structure modeling showed that somatic mutations in IDH2, RASGEF1B, and MSH4 can affect protein structures.

Genetic variations affecting response of radiotherapy

  • Choi, Eun Kyung
    • Journal of Genetic Medicine
    • /
    • 제19권1호
    • /
    • pp.1-6
    • /
    • 2022
  • Radiation therapy (RT) is a very important treatment for cancer that irradiates a large amount of radiation to lead cancer cells and tissues to death. The progression of RT in the aspect of personalized medicine has greatly advanced over the past few decades in the field of technical precision responding anatomical characteristics of each patient. However, the consideration of biological heterogeneity that makes different effect in individual patients has not actually applied to clinical practice. There have been numerous discovery and validation of biomarkers that can be applied to improve the efficiency of radiotherapy, among which those related to genomic information are very promising developments. These genome-based biomarkers can be applied to identify patients who can benefit most from altering their therapeutic dose and to select the best chemotherapy improving sensitivity to radiotherapy. The genomics-based biomarkers in radiation oncology focus on mutational changes, particularly oncogenes and DNA damage response pathways. Although few have translated into clinically viable tools, there are many promising candidates in this field. In this review the prominent mutation-based biomarkers and their potential for clinical translation will be discussed.

Roles of Immunohistochemical Staining in Diagnosing Pulmonary Squamous Cell Carcinoma

  • Yan, Yue;Zhang, Ya-Xiong;Fang, Wen-Feng;Kang, Shi-Yang;Zhan, Jian-Hua;Chen, Nan;Hong, Shao-Dong;Liang, Wen-Hua;Tang, Yan-Na;He, Da-Cheng;Wu, Xuan;Zhang, Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권2호
    • /
    • pp.551-557
    • /
    • 2015
  • Background: Differentiating morphologic features based on hematoxylin-eosin (HE) staining is the most common method to classify pathological subtypes of non-small-cell lung cancer (NSCLC). However, its accuracy and inter-observer reproducibility in pathological diagnosis of poorly differentiated NSCLC remained to be improved. Materials and Methods: We attempted to explore the role of immunohistochemistry (IHC) staining in diagnosing pulmonary squamous cell carcinoma (SQCC) with poorly differentiated features by HE staining or with elevated serum adenocarcinoma-specific tumor markers (AD-TMs). We also compared the difference of epidermal growth factor receptor (EGFR) mutation rate between patients with confirmed SQCC and those with revised pathological subtype. Logistic regression analyses were used to test the association between different factors and diagnostic accuracy. Results: A total of 132 patients who met the eligible criteria and had adequate specimens for IHC confirmation were included. Pathological revised cases in poor differentiated subgroup, biopsy samples and high-level AD-TMs cases were more than those with high/moderate differentiation, surgical specimens and normal-level AD-TMs. Moreover, biopsy sample was a significant factor decreasing diagnostic accuracy of pathological subtype (OR, 4.037; 95% CI 1.446-11.267, p=0.008). Additionally, EGFR mutation rate was higher in patients with pathological diagnostic changes than those with confirmed SQCC (16.7% vs 4.4%, p=0.157). Conclusions: Diagnosis based on HE staining only might cause pathological misinterpretation in NSCLC patients with poor differentiation or high-level AD-TMs, especially those with biopsy samples. HE staining and IHC should be combined as pathological diagnostic standard. The occurrence of EGFR mutations in pulmonary SQCC might be overestimated.

Novel Mutations in Cholangiocarcinoma with Low Frequencies Revealed by Whole Mitochondrial Genome Sequencing

  • Muisuk, Kanha;Silsirivanit, Atit;Imtawil, Kanokwan;Bunthot, Suphawadee;Pukhem, Ake;Pairojkul, Chawalit;Wongkham, Sopit;Wongkham, Chaisiri
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.1737-1742
    • /
    • 2015
  • Background: Mitochondrial DNA (mtDNA) mutations have been shown to be associated with cancer. This study explored whether mtDNA mutations enhance cholangiocarcinoma (CCA) development in individuals. Materials and Methods: The whole mitochondrial genome sequences of 25 CCA patient tissues were determined and compared to those of white blood cells from the corresponding individuals and 12 healthy controls. The mitochondrial genome was amplified using primers from Mitoseq and compared with the Cambridge Reference Sequence. Results: A total of 161 mutations were identified in CCA tissues and the corresponding white blood cells, indicating germline origins. Sixty-five (40%) were new. Nine mutations, representing those most frequently observed in CCA were tested on the larger cohort of 60 CCA patients and 55 controls. Similar occurrence frequencies were observed in both groups. Conclusions: While the correspondence between the cancer and mitochondrial genome mutation was low, it is of interest to explore the functions of the missense mutations in a larger cohort, given the possibility of targeting mitochondria for cancer markers and therapy in the future.

Targeted Resequencing of 30 Genes Improves the Detection of Deleterious Mutations in South Indian Women with Breast and/or Ovarian Cancers

  • Rajkumar, Thangarajan;Meenakumari, Balaiah;Mani, Samson;Sridevi, Veluswami;Sundersingh, Shirley
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권13호
    • /
    • pp.5211-5217
    • /
    • 2015
  • Background: We earlier used PCR-dHPLC for mutation analysis of BRCA1 and BRCA2. In this article we report application of targeted resequencing of 30 genes involved in hereditary cancers. Materials and Methods: A total of 91 patient samples were analysed using a panel of 30 genes in the Illumina HiScan SQ system. CLCBio was used for mapping reads to the reference sequences as well as for quality-based variant detection. All the deleterious mutations were then reconfirmed using Sanger sequencing. Kaplan Meier analysis was conducted to assess the effect of deleterious mutations on disease free and overall survival. Results: Seventy four of the 91 samples had been run earlier using the PCR-dHPLC and no deleterious mutations had been detected while 17 samples were tested for the first time. A total of 24 deleterious mutations were detected, 11 in BRCA1, 4 in BRCA2, 5 in p53, one each in RAD50, RAD52, ATM and TP53BP1. Some 19 deleterious mutations were seen in patients who had been tested earlier with PCR-dHPLC [19/74] and 5/17 in the samples tested for the first time, Together with our earlier detected 21 deleterious mutations in BRCA1 and BRCA2, we now had 45 mutations in 44 patients. BRCA1c.68_69delAG;p.Glu23ValfsX16 mutation was the most common, seen in 10/44 patients. Kaplan Meier survival analysis did not show any difference in disease free and overall survival in the patients with and without deleterious mutations. Conclusions: The NGS platform is more sensitive and cost effective in detecting mutations in genes involved in hereditary breast and/or ovarian cancers.

Generation and analysis of whole-genome sequencing data in human mammary epithelial cells

  • Jong-Lyul Park;Jae-Yoon Kim;Seon-Young Kim;Yong Sun Lee
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.11.1-11.5
    • /
    • 2023
  • Breast cancer is the most common cancer worldwide, and advanced breast cancer with metastases is incurable mainly with currently available therapies. Therefore, it is essential to understand molecular characteristics during the progression of breast carcinogenesis. Here, we report a dataset of whole genomes from the human mammary epithelial cell system derived from a reduction mammoplasty specimen. This system comprises pre-stasis 184D cells, considered normal, and seven cell lines along cancer progression series that are immortalized or additionally acquired anchorage-independent growth. Our analysis of the whole-genome sequencing (WGS) data indicates that those seven cancer progression series cells have somatic mutations whose number ranges from 8,393 to 39,564 (with an average of 30,591) compared to 184D cells. These WGS data and our mutation analysis will provide helpful information to identify driver mutations and elucidate molecular mechanisms for breast carcinogenesis.

Lack of Mutations in Protein Tyrosine Kinase Domain Coding Exons 19 and 21 of the EGFR Gene in Oral Squamous Cell Carcinomas

  • Mehta, Dhaval Tushar;Annamalai, Thangavelu;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권11호
    • /
    • pp.4623-4627
    • /
    • 2014
  • Background: The epidermal growth factor receptor (EGFR) plays a vital role in the activation and inactivation of receptor tyrosine kinases. Mutations in exons 19 and 21 of EGFR are commonly found to be associated with non small cell lung carcinoma and triple negative breast cancer, enhancing sensitivity to EGFR targeting chemotherapeutic agents. Since amplification and prolonged activation of EGFR molecules have been identified in oral squamous cell carcinomas (OSCC), we investigated whether OSCCs carried mutations in exons 19 and 21 of EGFR to their incidence. Materials and Methods: Tumor chromosomal DNA isolated from forty surgically excised oral squamous cell carcinoma tissues was subjected to PCR amplification with intronic primers flanking exons 19 and 21 of the EGFR gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the mutation status. Results: Data analysis of the EGFR exon 19 and 21 coding sequences did not show any mutations in the forty OSCC samples that were analyzed. Conclusions: To the best of our knowledge, this is the first study to have investigated the genetic status of exons 19 and 21 of EGFR in Indian OSCCs and identified that mutation in EGFR exon 19 and 21 may not contribute towards their genesis. The absence of mutations also indicates that oral cancerous lesions may not be as sensitive as other cancers to chemotherapeutic agents targeting EGFR.

No Effect of High Fat Diet-Induced Obesity on Spontaneous Reporter Gene Mutations in gpt Delta Mice

  • Takasu, Shinji;Ishii, Yuji;Matsushita, Kohei;Kuroda, Ken;Kijima, Aki;Kodama, Yukio;Ogawa, Kumiko;Umemura, Takashi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권17호
    • /
    • pp.7149-7152
    • /
    • 2014
  • A large number of epidemiological studies have demonstrated that obesity is a risk factor for several human cancers. Several animal studies using rodents with diet-induced or genetic obesity have also demonstrated that obesity can promote tumor development. However, the effects of obesity on the early stages of carcinogenesis, and especially on the spontaneous occurrence of somatic gene mutations, remain unclear. To investigate the effects of obesity on the rate of spontaneous gene mutations, we performed reporter gene mutation assays in liver, kidney, and colon, organs in which obesity appears to be associated with cancer development on the basis of epidemiological or animal studies, in mice with high fat diet (HFD)-induced obesity. Six-week-old male and female C57BL/6 gpt delta mice were fed HFD or standard diet (STD) for 13 or 26 weeks. At the end of the experiments, reporter gene mutation assays of liver, kidney, and colon were performed. Final body weights and serum leptin levels of male and female mice fed HFD for 13 or 26 weeks were significantly increased compared with corresponding STD-fed groups. Reporter gene mutation assays of liver, kidney, and colon revealed that there were no significant differences in gpt or $Spi^-$ mutant frequencies between STD- and HFD-fed mice in either the 13-week or 26-week groups. These results indicate that HFD treatment and consequent obesity does not appear to influence the spontaneous occurrence of somatic gene mutations.