• 제목/요약/키워드: Cancer diagnostics

Search Result 95, Processing Time 0.024 seconds

Objective Quantitation of EGFR Protein Levels using Quantitative Dot Blot Method for the Prognosis of Gastric Cancer Patients

  • Xin, Lei;Tang, Fangrong;Song, Bo;Yang, Maozhou;Zhang, Jiandi
    • Journal of Gastric Cancer
    • /
    • v.21 no.4
    • /
    • pp.335-351
    • /
    • 2021
  • Purpose: An underlying factor for the failure of several clinical trials of anti-epidermal growth factor receptor (EGFR) therapies is the lack of an effective method to identify patients who overexpress EGFR protein. The quantitative dot blot method (QDB) was used to measure EGFR protein levels objectively, absolutely, and quantitatively. Its feasibility was evaluated for the prognosis of overall survival (OS) of patients with gastric cancer. Materials and Methods: Slices of 2×5 ㎛ from formalin-fixed paraffin-embedded gastric cancer specimens were used to extract total tissue lysates for QDB measurement. Absolutely quantitated EGFR protein levels were used for the Kaplan-Meier OS analysis. Results: EGFR protein levels ranged from 0 to 772.6 pmol/g (n=246) for all gastric cancer patients. A poor correlation was observed between quantitated EGFR levels and immunohistochemistry scores with ρ=0.024 and P=0.717 in Spearman's correlation analysis. EGFR was identified as an independent negative prognostic biomarker for gastric cancer patients only through absolute quantitation, with a hazard ratio of 1.92 (95% confidence interval, 1.05-3.53; P=0.034) in multivariate Cox regression OS analysis. A cutoff of 208 pmol/g was proposed to stratify patients with a 3-year survival probability of 44% for patients with EGFR levels above the cutoff versus 68% for those below the cutoff based on Kaplan-Meier OS analysis (log rank test, P=0.002). Conclusions: A QDB-based assay was developed for gastric cancer specimens to measure EGFR protein levels absolutely, quantitatively, and objectively. This assay should facilitate clinical trials aimed at evaluation of anti-EGFR therapies retrospectively and prospectively for gastric cancer.

Orphan Nuclear Receptor Nurr1 as a Potential Novel Marker for Progression in Human Prostate Cancer

  • Wang, Jian;Yang, Jing;Zou, Ying;Huang, Guo-Liang;He, Zhi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.2023-2028
    • /
    • 2013
  • A number of studies have indicated that Nurr1, which belongs to a novel class of orphan nuclear receptors (the NR4A family), is important for carcinogenesis. Here we investigated expression of Nurr1 protein in benign and malignant human prostate tissues and association with clinicopathologic features using immunohistochemical techniques. Moreover, we also investigated the ability of Nurr1 to influence proliferation, migration, invasion and apoptosis of human prostate cancer cells using small interfering RNA silencing. Immunohistochemical analysis revealed that the expression of Nurr1 protein was higher in prostate cancer tissues than in benign prostate tissue (P<0.001), levels being positively correlated with tumor T classification (P = 0.003), N classification (P = 0.017), M classification (P = 0.011) and the Gleason score (P = 0.020) of prostate cancer patients. In vitro, silencing of endogenous Nurr1 attenuated cell proliferation, migration and invasion, and induced apoptosis of prostate cancer cells. These results suggest that Nurr1 may be used as an indicator for prostate cancer progression and be useful for novel potential therapeutic strategies.

Effect of the Geijibokryunghwan on human hepatocarcinoma cells

  • Lee Soo Kyung;Kim Han Geu;Ahan Jong Chan;Chung Tae Wook;Moon Jin Young;Park Sun Dong;Kim June Ki;Choi Dall Yeong;Kim Cherl Ho;Park Won Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.568-573
    • /
    • 2003
  • We invesgated the GBH water extracts can be used as a potential cancer chemopreventive agent in humans, especially in hepatological cancer cell lines. The GBH was found to act as an potent inhibitor of COX-I only, but not as COX-2 inhibitor. Furthermore, the extract mediated anti-inflammatory effects and inhibited COX-associated hydroperoxidase functions(antipromotion activity). Inhibitory effect of the GBH water extracts on the growth of cancer cell lines such as HepG2 cell and Hep3B cell was shown.

Growth Inhibitory and Pro-Apoptotic Effects of Hirsuteine in Chronic Myeloid Leukemia Cells through Targeting Sphingosine Kinase 1

  • Gao, Shan;Guo, Tingting;Luo, Shuyu;Zhang, Yan;Ren, Zehao;Lang, Xiaona;Hu, Gaoyong;Zuo, Duo;Jia, Wenqing;Kong, Dexin;Yu, Haiyang;Qiu, Yuling
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.553-561
    • /
    • 2022
  • Chronic myeloid leukemia (CML) is a slowly progressing hematopoietic cell disorder. Sphingosine kinase 1 (SPHK1) plays established roles in tumor initiation, progression, and chemotherapy resistance in a wide range of cancers, including leukemia. However, small-molecule inhibitors targeting SPHK1 in CML still need to be developed. This study revealed the role of SPHK1 in CML and investigated the potential anti-leukemic activity of hirsuteine (HST), an indole alkaloid obtained from the oriental plant Uncaria rhynchophylla, in CML cells. These results suggest that SPHK1 is highly expressed in CML cells and that overexpression of SPHK1 represents poor clinical outcomes in CML patients. HST exposure led to G2/M phase arrest, cellular apoptosis, and downregulation of Cyclin B1 and CDC2 and cleavage of Caspase 3 and PARP in CML cells. HST shifted sphingolipid rheostat from sphingosine 1-phosphate (S1P) towards the ceramide coupled with a marked inhibition of SPHK1. Mechanistically, HST significantly blocked SPHK1/S1P/S1PR1 and BCR-ABL/PI3K/Akt pathways. In addition, HST can be docked with residues of SPHK1 and shifts the SPHK1 melting curve, indicating the potential protein-ligand interactions between SPHK1 and HST in both CML cells. SPHK1 overexpression impaired apoptosis and proliferation of CML cells induced by HST alone. These results suggest that HST, which may serve as a novel and specific SPHK1 inhibitor, exerts anti-leukemic activity by inhibiting the SPHK1/S1P/S1PR1 and BCR-ABL/PI3K/Akt pathways in CML cells, thus conferring HST as a promising anti-leukemic drug for CML therapy in the future.

Effects of the Geijibokryunghwan on Carrageenan-induced Inflammation and COX-2 in Hepatoma Cells

  • Joo, Shin-Tak;Ban, Chang-Gyu;Park, Soon-Gi;Park, Won-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.1027-1031
    • /
    • 2006
  • In oriental medicine, Geijibokryunghwan(GBH) was used to improvement various symptoms created by the thrombosis. We investigated the effects of an oriental medicinal prescriptions, Geijibokryunghwan (GBH) consisting of herbs of Cinnamomi Ramufus (Geiji; 桂枝), Poria cocos (Bokrung; 茯?), Moutan Cortex Radicis(Modanpi; 牧丹皮), Paeoniae Radix (Jakyak; 芍藥) and Persicae Semen (Doin; 桃仁) on tumor growth-inhibitory activity and cancer chempreventive activity in assays representing three maior stages of carcinogenesis. Cancer chempreventive agents include nonsteroidal anti-inflammatory drugs (NSAIDS) such as indomethacin, aspirin, piroxicam, and sulindac, all of which inhibit cyclooxygenase (COX). Effects of the GBH extracts on carrageenan-induced edema Inflammation using female (C57BL/6XC3H) Fl (B6C3Fl ) mice and tumorigenesis were examined. Finally, cyclooxygenase metabolites were determined after extracts treatment. These data suggest that GBH extracts merits investigation as a potential cancer chempreventive agent in humans.

Fused Polypeptide with DEF Induces Apoptosis of Lung Adenocarcinoma Cells

  • Liang, Ai-Ling;Zhang, Ting-Ting;Zhou, Ning;Huang, Di-Nan;Liu, Xin-Guang;Liu, Yong-Jun;Tu, Zhi-Guang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7339-7344
    • /
    • 2013
  • To analyze the effects of a new unknown peptide DEF on the growth of tumor cells, a fused polypeptide TAT-DV1-DEF was designed and synthesized. The lung adenocarcinoma cell line GLC-82 treated with TAT-DV1-DEF was analyzed with a cell counting kit 8, and the location of polypeptides in cells was observed under laser confocal microscopy. The efficiency of polypeptide transfection and changes in nuclear morphology were analyzed by flow cytometry and fluorescence microscopy, respectively. Finally, the mechanism of tumor cell growth inhibition was evaluated by Western blotting. We found that TAT-DV1-DEF could significantly inhibit the growth of the lung adenocarcinoma cell line GLC-82, but not the normal human embryonic kidney cell line HEK-293. Polypeptides were found to be mostly localized in the cytoplasm and some mitochondria. The efficiency of polypeptide transfection in the two cell types was approximately 99%. Apoptotic nuclei were observed under fluorescence microscopy upon treatment with polypeptides and DAPI staining. Western blot analyses indicated that the polypeptide inhibition of tumor cell growth was apoptosis dependent. In the present study, we demonstrated that fused polypeptides could induce apoptosis of the lung adenocarcinoma cell line GLC-82, indicating that the new unknown peptide DEF has antitumor effects.

Isolation of RNA Aptamers Targeting HER-2-overexpressing Breast Cancer Cells Using Cell-SELEX

  • Kang, Hye-Suk;Huh, Yong-Min;Kim, So-Youn;Lee, Dong-ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1827-1831
    • /
    • 2009
  • Ligand molecules that can recognize and interact with cancer cell surface marker proteins with high affinity and specificity should greatly aid the development of novel cancer diagnostics and therapeutics. HER-2/ErbB2/Neu (HER-2), a member of the epidermal growth factor receptor family, is specifically overexpressed on the surface of breast cancer cells and serves as both a useful biomarker and a therapeutic target for breast cancer. In this study, we aimed to isolate RNA aptamers that specifically bind to a HER-2-overexpressing human breast cancer cell line, SK-BR-3, using Cell-SELEX strategy. The selected aptamers showed strong affinity to SK-BR-3, but not to MDAMB- 231, a HER-2-underexpressing breast cancer cell line. In addition, we confirmed the specific targeting of HER-2 receptor by aptamers using an unrelated mouse cell line overexpressing human HER-2 receptor. The HER-2-targeting RNA aptamers could become a useful reagent for the development of breast cancer diagnostics and therapeutics.

High Cytoplasmic Expression of the Orphan Nuclear Receptor NR4A2 Predicts Poor Survival in Nasopharyngeal Carcinoma

  • Wang, Jian;Yang, Jing;Li, Bin-Bin;He, Zhi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2805-2809
    • /
    • 2013
  • Objective: This study aimed at investigating whether the orphan nuclear receptor NR4A2 is significantly associated with clinicopathologic features and overall survival of patients with nasopharyngeal carcinoma (NPC). Methods: Immunohistochemistry was performed to determine NR4A2 protein expression in 84 NPC tissues and 20 non-cancerous nasopharyngeal (NP) tissues. The prognostic significance of NR4A2 protein expression was evaluated using Cox proportional hazards regression models and Kaplan-Meier survival analysis. Results: We did not find a significant association between total NR4A2 expression and clinicopathological variables in 84 patients with NPC. However, we observed that high cytoplasmic expression of NR4A2 was significantly associated with tumor size (T classification) (P = 0.006), lymph node metastasis (N classification) (P = 0.002) and clinical stage (P = 0.017). Patients with higher cytoplasmic NR4A2 expression had a significantly lower survival rate than those with lower cytoplasmic NR4A2 expression (P = 0.004). Multivariate Cox regression analysis analysis suggested that the level of cytoplasmic NR4A2 expression was an independent prognostic indicator for overall survival of patients with NPC (P = 0.033). Conclusions: High cytoplasmic expression of NR4A2 is a potential unfavorable prognostic factor for patients with NPC.

Clinicopathological Significance of S100A10 Expression in Lung Adenocarcinomas

  • Katono, Ken;Sato, Yuichi;Jiang, Shi-Xu;Kobayashi, Makoto;Saito, Keita;Nagashio, Ryo;Ryuge, Shinichiro;Satoh, Yukitoshi;Saegusa, Makoto;Masuda, Noriyuki
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.289-294
    • /
    • 2016
  • Background: S100A10, of the S100 protein family, is reported to be involved in cancer cell invasion and metastasis. The aims of the present study were to immunohistochemically examine S100A10 expression in surgically resected lung adenocarcinomas, and evaluate any relationships with clinicopathological parameters and prognosis of patients. Materials and Methods: S100A10 expression was immunohistochemically studied in 202 consecutive resected lung adenocarcinomas, and its associations with clinicopathological parameters were evaluated. Kaplan-Meier survival analysis and Cox proportional hazards models were used to estimate the effect of S100A10 expression on survival. Results: S100A10 expression was detected in 65 of the 202 (32.2%) lung adenocarcinomas, being significantly correlated with poorer differentiation (P =0.015), a higher pathological TNM stage (stages II and III) (P=0.004), more frequent and severe intratumoral vascular invasion (P=0.001), and a poorer prognosis (P=0.030). However, S100A10 expression was not an independent predictor of survival after controlling for clinicopathological factors. Conclusions: The present study reveals that S100A10 is expressed in a subset of lung adenocarcinomas, and this is related to some clinicopathological parameters, although further studies are required to confirm the correlation between S100A10 expression and prognosis of lung adenocarcinoma patients.

Nanotechnology in Cancer Therapy: Overview and Applications

  • Choi, Eun-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.59-65
    • /
    • 2011
  • Nanotechnology for cancer therapy is playing a pivotal role in dramatically improving current approaches to cancer detection, diagnosis, and therapy while reducing toxic side effects associated with previous cancer therapy. A widespread understanding of these new technologies will lead to develop the more refined design of optimized nanoparticles with improved selectivity, efficacy and safety in the clinical practice of oncology. This review provides an integrated overview of applications and advances of nanotechnology in cancer therapy, based on molecular diagnostics, treatment, monitoring, target drug delivery, approved nanoparticle-based chemotherapeutic agents, and current clinical trials in the development of nanomedicine and ultimately personalized medicine.