• Title/Summary/Keyword: Cancer Cell Lines

Search Result 1,739, Processing Time 0.035 seconds

Effect of Ultrasound-Induced Hyperthermia on Cellular Uptake of P-gp Substrate and Non-P-gp Substrate in MDR Cells

  • Cho, Cheong-Weon;Kim, Dong-Chool;Shin, Sang-Chul
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.3
    • /
    • pp.131-135
    • /
    • 2007
  • A previous report recently demonstrated that ultrasound-induced hyperthermia (USHT:0.4 watts (W)/$cm^2$ at $41^{\circ}C$) could increase cellular uptake of P-glycoprotein (P-gp) substrates in P-gp expressing cancer cell lines. Since P-gp plays a major role in limiting drug permeability in the multi-drug resistant (MDR) cells, studies were conducted to elucidate the mechanism of USHT on cellular accumulation of P-gp and non-P-gp substrate in MDR cells. To accomplish this aim, we studied the effects of USHT on the accumulation of P-gp substrate, R123 and non-P-gp substrate, antipyrine in MDR cells. We demonstrated that USHT increased permeability of hydrophobic molecules (R123 and $[^{14}C]$-antipyrine). The enhanced permeability is reversible and size-dependent as USHT produces a much larger effect on cellular accumulation of $[^{14}C]$-antipyrine (MW 188) than that of R123 (MW 380.8). These results suggest that USHT could affect MDR cells more sensitive than BBMECs. Also, the present results point to the potential use of USHT to increase cellular uptake of P-gp recognized substrates, mainly anti-cancer agents into cancer cells.

Effect of Extracts from Oriental Plum (Formosa, Oishiwase, Soldam) on LPS-stimulated Raw 264.7 Cells (자두(후무사, 대석, 피자두) 추출물이 LPS로 염증을 유발한 Raw 264.7 세포와 암 세포에 미치는 영향)

  • Kim, Se-Na;Kim, So-Young;Kim, Jung-Bong;Park, Hong-Ju;Cho, Young-Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.2
    • /
    • pp.197-202
    • /
    • 2013
  • The objective of this study is to evaluate the anti-cancer and anti-inflammatory activities of plum (Formosa, Oishiwase, Soldam) for the future development of functional food products. To determine the anti-inflammatory effect of different types of plums, the inhibitory effect of plum extracts on nitric oxide (NO) production were measured in lipopolysaccharide (LPS)-stimulated Raw 264.7 mouse macrophage cells and human cancer cell lines (A549, Ags, Hela, Hep3B). Among the three different plum cultivars, Oishiwase at a concentration of 1 mg/mL showed the highest inhibitory effects on NO production (%) in Raw 264.7 macrophage cells. Moreover, Oishiwase exhibited a higher anti-cancer activity against A549 (renal carcinoma, 50%), Ags (gastric carcinoma, 35%), HeLa (cervical carcinoma, 50%), and Hep3B (hepatocellular carcinoma, 31%) at a concentration on 1 mg/mL, respectively, compared to Formosa and Soldam. Our findings suggest Oishiwase plum extracts may serve as potential dietary sources of natural health promoting substances.

Overexpression and Selective Anticancer Efficacy of ENO3 in STK11 Mutant Lung Cancers

  • Park, Choa;Lee, Yejin;Je, Soyeon;Chang, Shengzhi;Kim, Nayoung;Jeong, Euna;Yoon, Sukjoon
    • Molecules and Cells
    • /
    • v.42 no.11
    • /
    • pp.804-809
    • /
    • 2019
  • Oncogenic gain-of-function mutations are clinical biomarkers for most targeted therapies, as well as represent direct targets for drug treatment. Although loss-of-function mutations involving the tumor suppressor gene, STK11 (LKB1) are important in lung cancer progression, STK11 is not the direct target for anticancer agents. We attempted to identify cancer transcriptome signatures associated with STK11 loss-of-function mutations. Several new sensitive and specific gene expression markers (ENO3, TTC39C, LGALS3, and MAML2) were identified using two orthogonal measures, i.e., fold change and odds ratio analyses of transcriptome data from cell lines and tissue samples. Among the markers identified, the ENO3 gene over-expression was found to be the direct consequence of STK11 loss-of-function. Furthermore, the knockdown of ENO3 expression exhibited selective anticancer effect in STK11 mutant cells compared with STK11 wild type (or recovered) cells. These findings suggest that ENO3-based targeted therapy might be promising for patients with lung cancer harboring STK11 mutations.

Comparison of the Uptakes of $^{99m}Tc-sestamibi\;and\;^{99m}Tc-tetrofosmin$ in Cancer Cell Lines Expressing Multidrug Resistance (다약제내성 발현 암세포에서 $^{99m}Tc-sestamibi$$^{99m}Tc-tetrofosmin$ 섭취의 비교)

  • Yoo, Jeong-Ah;Chung, Shin-Young;Seo, Myeng-Rang;Kwak, Dong-Suk;Ahn, Byeong-Cheol;Lee, Kyu-Bo;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.3
    • /
    • pp.178-189
    • /
    • 2003
  • Purpose: Cellular uptakes of $^{99m}Tc-sestamibi(MIBI)\;and\;\;^{99m}Tc-tetrofosmin$ into cancer cell lines expressing multidrug resistance(MDR) were investigated and compared. The effects of verapamil and cyclosporin A, well-known multidrug resistant reversing agents, on cellular uptakes of both tracers were also compared. Materials and Methods: Doxorubicin-resistant HCT15/CL02 human colorectal cell and doxorubicin-resistant K562(Adr) and vincristine-resistant K562(Vcr) human leukemic cells were studied. RT-PCR analysis was used for the detection of mdr1 mRNA expression. MDR-reversal effects with verapamil and cyclosporine A were evaluated at different drug concentrations after incubation with MIBI and tetrofosmin for 1, 15, 30, 45 and 60 min, using single-cell suspensions at $1{\times}10^6cells/ml$ incubated at $37^{\circ}C$. Radioactivity in supernatants and pellets were measured with gamma well counter. Results: The cellular uptakes of MIBI and tetrofosmin in K562(Adr) and K562(Vcr) were lower than those of parental K562 cell. In HCT15/CL02 cells and K562(Adr) cells, there were no significant difference in cellular uptakes of both tracers, but cellular uptake of MIBI was higher than that of tetrofosmin in K562(Vcr) cells. Coincubation with verapamil resulted in a increase In cellular uptakes of MIBI and tetrofosmin. Verapamil increased cellular uptakes of MIBI and tetrofosmin by HCT15/CL02 cell by 11.9- and 6.8-fold, by K562(Adr) cell by 14.3- and 8-fold and by K562(Vcr) cell by 7- and 5.7-fold in maximum, respectively. Cyciosporin A increased cellular uptakes of MIBI and tetrofosmin by HCT15/CL02 cell by 10- and 2.4-fold, by K562(Adr) cell by 44- and 13-fold and by K562(Vcr) cell by 18.8- and 11.8-fold in maximum, respectively Conclusion: Taking together, MIBI and tetrofosmin are considered as suitable radiopharmaceuticals for defecting multidrug resistance. However, MIBI seems to be a better tracer than tetrofosmin for evaluating MDR reversal effect of the modulators. Since cellular uptakes of both tracers might differ in different cell types, further experiments regarding differences in cellular uptakes between cell types should be explored.

PRR16/Largen Induces Epithelial-Mesenchymal Transition through the Interaction with ABI2 Leading to the Activation of ABL1 Kinase

  • Kang, Gyeoung Jin;Park, Jung Ho;Kim, Hyun Ji;Kim, Eun Ji;Kim, Boram;Byun, Hyun Jung;Yu, Lu;Nguyen, Tuan Minh;Nguyen, Thi Ha;Kim, Kyung Sung;Huy, Hieu Phung;Rahman, Mostafizur;Kim, Ye Hyeon;Jang, Ji Yun;Park, Mi Kyung;Lee, Ho;Choi, Chang Ick;Lee, Kyeong;Han, Hyo Kyung;Cho, Jungsook;Rho, Seung Bae;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.340-347
    • /
    • 2022
  • Advanced or metastatic breast cancer affects multiple organs and is a leading cause of cancer-related death. Cancer metastasis is associated with epithelial-mesenchymal metastasis (EMT). However, the specific signals that induce and regulate EMT in carcinoma cells remain unclear. PRR16/Largen is a cell size regulator that is independent of mTOR and Hippo signalling pathways. However, little is known about the role PRR16 plays in the EMT process. We found that the expression of PRR16 was increased in mesenchymal breast cancer cell lines. PRR16 overexpression induced EMT in MCF7 breast cancer cells and enhances migration and invasion. To determine how PRR16 induces EMT, the binding proteins for PRR16 were screened, revealing that PRR16 binds to Abl interactor 2 (ABI2). We then investigated whether ABI2 is involved in EMT. Gene silencing of ABI2 induces EMT, leading to enhanced migration and invasion. ABI2 is a gene that codes for a protein that interacts with ABL proto-oncogene 1 (ABL1) kinase. Therefore, we investigated whether the change in ABI2 expression affected the activation of ABL1 kinase. The knockdown of ABI2 and PRR16 overexpression increased the phosphorylation of Y412 in ABL1 kinase. Our results suggest that PRR16 may be involved in EMT by binding to ABI2 and interfering with its inhibition of ABL1 kinase. This indicates that ABL1 kinase inhibitors may be potential therapeutic agents for the treatment of PRR16-related breast cancer.

Effects of Heat Shock Treatment on Enzymatic Proteolysis for LC-MS/MS Quantitative Proteome Analysis

  • Arul, Albert-Baskar;Han, Na-Young;Jang, Young-Su;Kim, Hyojin;Kim, Hwan-Mook;Lee, Hookeun
    • Mass Spectrometry Letters
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Various efforts have been developed to improve sample preparation steps, which strongly depend on hands-on processes for accurate and sensitive quantitative proteome analysis. In this study, we carried out heating the sample prior to trypsin digestion using an instrument to improve the tryptic digestion process. The heat shock generated by the system efficiently denatured proteins in the sample and increased the reproducibility in quantitative proteomics based on peptide abundance measurements. To demonstrate the effectiveness of the protocol, three cell lines (A human lung cancer cell line (A549), a human embryonic kidney cell line (HEK293T), and a human colorectal cancer cell line (HCT-116)) were selected and the effect of heat shock was compared to that of normal tryptic digestion processes. The tryptic digests were desalted and analysed by LC-MS/MS, the results showed 57 and 36% increase in the number of identified unique peptides and proteins, respectively, than conventional digestion. Heat shock treated samples showed higher numbers of shorter peptides and peptides with low inter-sample variation among triplicate runs. Quantitative LC-MS/MS analysis of heat shock treated sample yielded peptides with smaller relative error percentage for the triplicate run when the peak areas were compared. Exposure of heat-shock to proteomic samples prior to proteolysis in conventional digestion process can increase the digestion efficiency of trypsin resulting in production of increased number of peptides eventually leading to higher proteome coverage.

Inhibition of Cellular Proliferation by p53 dependent Apoptosis and G2M Cell Cycle Arrest of Saussurea lappa CLARKE in AGS Gastric Cancer Cell Lines

  • Jeong Han Su;Kim Dong Jo;Heo Geum Jeong;Nam Chang Gyu;Go Seong Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1186-1191
    • /
    • 2004
  • The root of Saussurea lappa includes sesquiterpene lactones such as costunolide and dehydrocostus lactone, and has been shown to be anti-tumorigenic with being used in traditional medicinal therapy in the Eastern Asia. However, the molecular basis of the effects of Saussurea lappa on fate of gastric carcinoma, which incur very frequently in the area, has not been well identified. In this study, the cytostatic effects of Saussurea lappa were examined using gastric AGS cancer cells. Cell viability was dramatically reduced by Saussurea lappa, in a dose-dependent manner. As time passed after its treatment, apoptotic population was increased and clearly showed G2-arrest. Being consistent, its treatment resulted in maintaining of G1 and S-phase cyclins D1, E, and A even until a significant apoptotic population was observed, for example, at 24h after treatment. However, G2/M phase cyclin B1 was reduced even at 12 h after treatment. In addition, its treatment increased expression of p53, p21/sup Wafl / cyclin dependent kinase inhibitor (CKI), and Bax, resulted in cleavages of procaspase 3 and poly ADP-ribose polymerase(PARP), indicating that such G2 arrest- and apoptosis-related molecules are involved. Therefore, these suggest that extracts of Saussurea lappa root may be a safer and effective reagent to deal with gastric cancers either by traditional herbal therapy or combinational therapy with conventional chemotherapy.

Potentiation of Apoptin-Induced Apoptosis by Cecropin B-Like Antibacterial Peptide ABPs1 in Human HeLa Cervical Cancer Cell Lines is Associated with Membrane Pore Formation and Caspase-3 Activation

  • Birame, Basse Mame;Wang, Jigui;Yu, Fuxian;Sun, Jiazeng;Li, Zhili;Liu, Weiquan
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.756-764
    • /
    • 2014
  • Apoptin, a chicken anemia virus-encoded protein, induces apoptosis in chicken or human tumor cells, localizing in their nuclei as opposed to the cytoplasm of non-transformed cells. The present study was undertaken to investigate whether ABPs1 could potentiate apoptin-induced apoptosis in HeLa cells. ABPs1 and the apoptin genes were successfully cloned into pIRES2-EGFP expression vector and expressed in HeLa cells. We report that ABPs1 augments apoptin cell growth inhibition in a concentration- and time-dependent manner. The DAPI staining and scanning electron microscopy observations revealed apoptotic bodies and plasma membrane pores, which were attributed to apoptin and ABPs1, respectively. Further, ABPs1 in combination with apoptin was found to increase the expression of Bax and to decrease the expression of survivin compared with either agent alone or the control. The apoptotic rate of HeLa cells treated with ABPs1 and apoptin in combination for 48 h was 53.95%. The two-gene combination increased the caspase-3 activity of HeLa cells. Taken together, our study suggests that ABPs1 combined with apoptin significantly inhibits HeLa cell proliferation, and induces cell apoptosis through membrane defects, up-regulation of Bax expression, down-regulation of survivin expression, and activation of the caspase-3 pathway. Thus, the combination of ABPs1 and apoptin could serve as a means to develop novel gene therapeutic agents against human cervical cancer.

Induction of ER Stress-Mediated Apoptosis by ${\alpha}$-Lipoic Acid in A549 Cell Lines

  • Kim, Jong-In;Cho, Sung-Rae;Lee, Chang-Min;Park, Eok-Sung;Kim, Ki-Nyun;Kim, Hyung-Chul;Lee, Hae-Young
    • Journal of Chest Surgery
    • /
    • v.45 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Background: ${\alpha}$-Lipoic acid (${\alpha}$-LA) has been studied as an anticancer agent as well as a therapeutic agent for diabetes and obesity. We performed this study to evaluate the anticancer effects and mechanisms of ${\alpha}$-LA in a lung cancer cell line, A549. Materials and Methods: ${\alpha}$-LA-induced apoptosis of A549 cells was detected by fluorescence-activated cell sorting analysis and a DNA fragmentation assay. Expression of apoptosis-related genes was analyzed by western blot and reverse transcription.polymerase chain reaction analyses. Results: ${\alpha}$-LA induced apoptosis and DNA fragmentation in A549 cells in a dose- and time-dependent manner. ${\alpha}$-LA increased caspase activity and the degradation of poly (ADP-ribose) polymerase. It induced expression of endoplasmic reticulum (ER) stress-related genes, such as glucose-regulated protein 78, C/EBP-homologous protein, and the short form of X-box binding protein-1, and decreased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein. Reactive oxygen species (ROS) production was induced by ${\alpha}$-LA, and the antioxidant N-acetyl-L-cysteine decreased the ${\alpha}$-LA-induced increase in expression of apoptosis and ER stress-related proteins. Conclusion: ${\alpha}$-LA induced ER stress-mediated apoptosis in A549 cells via ROS. ${\alpha}$-LA may therefore be clinically useful for treating lung cancer.

Autophagy Inhibition Promotes Gambogic Acid-induced Suppression of Growth and Apoptosis in Glioblastoma Cells

  • Luo, Guo-Xuan;Cai, Jun;Lin, Jing-Zhi;Luo, Wei-Shi;Luo, Heng-Shan;Jiang, Yu-Yang;Zhang, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6211-6216
    • /
    • 2012
  • Objective: To investigate the effects of gambogic acid (GA) on the growth of human malignant glioma cells. Methods: U251MG and U87MG human glioma cell lines were treated with GA and growth and proliferation were investigated by MTT and colony formation assays. Cell apoptosis was analyzed by annexin V FITC/PI flow cytometry, mitochondrial membrane potential assays and DAPI nuclear staining. Monodansylcadaverine (MDC) staining and GFP-LC3 localisation were used to detect autophagy. Western blotting was used to investigate the molecular changes that occurred in the course of GA treatment. Results: GA treatment significantly suppressed cell proliferation and colony formation, induced apoptosis in U251 and U87MG glioblastoma cells in a time- and dose-dependent manner. GA treatment also lead to the accumulation of monodansylcadaverine (MDC) in autophagic vacuoles, upregulated expressions of Atg5, Beclin 1 and LC3-II, and the increase of punctate fluorescent signals in glioblastoma cells pre-transfected with GFP-tagged LC3 plasmid. After the combination treatment of autophagy inhitors and GA, GA mediated growth inhibition and apoptotic cell death was further potentiated. Conclusion: Our results suggested that autophagic responses play roles as a self-protective mechanism in GA-treated glioblastoma cells, and autophagy inhibition could be a novel adjunctive strategy for enhancing chemotherapeutic effect of GA as an anti-malignant glioma agent.