• Title/Summary/Keyword: Camera-projector system

Search Result 52, Processing Time 0.017 seconds

Foreground object detection in projection display (프로젝션 화면에서 전경물체 검출)

  • Kang Hyun;Lee Chang Woo;Park Min Ho;Jung Keechul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.1
    • /
    • pp.27-37
    • /
    • 2004
  • The detection of foreground objects in a projection display using color information can be hard due to changing lighting conditions and complex backgrounds. Accordingly, the current paper proposes a foreground object detection method using color information that is obtained from the input image to the Projector and an image captured by a camera above the projection display. After pixel correspondences between the two images are found by calibrating the geometry distortion and color distortion, the natural color variations are estimated for the projection display. Then, any pixel that has another variation not resulting from natural geometry or color distortion is considered a part of foreground objects, because a foreground object in a projection display changes the values of pixels. As shown by experimental results, the proposed foreground detection method is applicable to an interactive projection display system such as the DigitalDesk

A Euclidean Reconstruction of 3D Face Data Using a One-Shot Absolutely Coded Pattern (단일 투사 절대 코드 패턴을 이용한 3차원 얼굴 데이터의 유클리디안 복원)

  • Kim, Byoung-Woo;Yu, Sun-Jin;Lee, Sang-Youn
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.133-140
    • /
    • 2005
  • This paper presents a rapid face shape acquisition system. The system is composed of two cameras and one projector. The technique works by projecting a pattern on the object and capturing two images with two cameras. We use a 'one shot' system which provides 3D data acquired by single image per camera. The system is good for rapid data acquisition as our purpose. We use the 'absolutely coded pattern' using the hue and saturation of pattern lines. In this 'absolutely coded pattern' all patterns have absolute identification numbers. We solve the correspondence problem between the two images by using epipolar geometry and absolute identification numbers. In comparison to the 'relatively coded pattern' which uses relative identification numbers, the 'absolutely coded pattern' helps obtain rapid 3D data by one to one point matching on an epipolar line. Because we use two cameras, we obtain two images which have similar hue and saturation. This enables us to have the same absolute identification numbers in both images, and we can use the absolutely coded pattern for solving the correspondence problem. The proposed technique is applied to face data and the total time for shape acquisition is estimated.