• Title/Summary/Keyword: Camera-laser scanner

Search Result 67, Processing Time 0.026 seconds

The Generation of Directional Velocity Grid Map for Traversability Analysis of Unmanned Ground Vehicle (무인차량의 주행성분석을 위한 방향별 속도지도 생성)

  • Lee, Young-Il;Lee, Ho-Joo;Jee, Tae-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.549-556
    • /
    • 2009
  • One of the basic technology for implementing the autonomy of UGV(Unmanned Ground Vehicle) is a path planning algorithm using obstacle and raw terrain information which are gathered from perception sensors such as stereo camera and laser scanner. In this paper, we propose a generation method of DVGM(Directional Velocity Grid Map) which have traverse speed of UGV for the five heading directions except the rear one. The fuzzy system is designed to generate a resonable traveling speed for DVGM from current patch to the next one by using terrain slope, roughness and obstacle information extracted from raw world model data. A simulation is conducted with world model data sampled from real terrain so as to verify the performance of proposed fuzzy inference system.

Tele-robotics in Agriculture - Tomato Harvesting Experiment -

  • Monta, Mitsuji;Kobayashi, Koji;Hirai, Takuya;Namba, Kazuhiko;Nishi, Takao
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.54-58
    • /
    • 2005
  • In this study, tele-robotics was researched to actualize robots in agriculture. The robot system consisted of a data collecting robot, several robots that performed their own agricultural operations, a server, client computers and networks between robots and computers. In this paper, as a first step, harvesting experiments were carried out. From the results, it was observed that the tele-robotics had feasibility to propel the robotization in agriculture. The tele-robotics has advantages not only that human workers are released from the severe working environment but also that the greenhouse can be monitored and controlled anytime and anywhere.

  • PDF

Measurements of Defects after Machining CFRP Holes Using High Speed Line Scan (고속 라인 스캔 방식을 이용한 CFRP 가공 홀 표면 및 내부 결함 검사)

  • Kim, Teaggyum;Kyung, Daesu;Son, Unchul;Park, Sun-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.459-467
    • /
    • 2016
  • Using a line scan camera and a Galvano mirror, we constructed a high-speed line-scanning microscope that can generate 2D images ($8000{\times}8000pixels$) without any moving parts. The line scanner consists of a Galvano mirror and a cylindrical lens, which creates a line focus that sweeps over the sample. The measured resolutions in the x (perpendicular to line focus) and y (parallel to line focus) directions are both $2{\mu}m$, with a 2X scan lens and a 3X relay lens. This optical system is useful for measuring defects, such as spalling, chipping, delamination, etc., on the surface of carbon fiber reinforced plastic (CFRP) holes after machining in conjunction with adjustments in the angle of LED lighting. Defects on the inner wall of holes are measured by line confocal laser scanning. This confocal method will be useful for analyzing defects after CFRP machining and for fast 3D image reconstruction.

Rock/Soil proportion estimation using image processing technique (광학식 측정방법을 활용한 풍화지반 버럭의 암/토사 구성비율 추정방법)

  • Jin, Kyu-Nam;Jin, Kim-Young;Park, Sung-Wook;Cho, Gye-Choon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1425-1432
    • /
    • 2010
  • In large construction site, although soil conversion factor is so significant to preliminary design, operation design and calculating the cost of construction that it is important to take reasonable estimation and application, the standard of soil conversion factor for weathered ground doesn't clearly suggested yet. So in this study, at first we obtain the image using DSLR - high resolution camera and Laser scanner in the Haeng-Bok city constructin site, then analysis the ratio of soil and rock using various image processing method(Sobel method, Laplace method, Highpass filter, Hue and Saturation analysis). Mutual comparation with the result of image processing analysis and manual segmentation of 5case image in the cad. As a result, best image processing method was different for each case. In case of high propotion of rock, Laplace was best and in case of high propotion of soil, Highpass was best, and mixed case Laplace was best.

  • PDF

Real-Time Algorithm for Relative Position Estimation Between Person and Robot Using a Monocular Camera (영상정보만을 이용한 사람과 로봇간 실시간 상대위치 추정 알고리즘)

  • Lee, Jung Uk;Sun, Ju Young;Won, Mooncheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1445-1452
    • /
    • 2013
  • In this paper, we propose a real-time algorithm for estimating the relative position of a person with respect to a robot (camera) using a monocular camera. The algorithm detects the head and shoulder regions of a person using HOG (Histogram of Oriented Gradient) feature vectors and an SVM (Support Vector Machine) classifier. The size and location of the detected area are used for calculating the relative distance and angle between the person and the camera on a robot. To increase the speed of the algorithm, we use a GPU and NVIDIA's CUDA library; the resulting algorithm speed is ~ 15 Hz. The accuracy of the algorithm is compared with the output of a SICK laser scanner.

Development of Program for Designing Barrel Cam of Machine Making Paper Cups (종이컵 성형기용 배럴 캠 설계 프로그램 개발)

  • Kim, Wook-Hyeon;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.433-438
    • /
    • 2011
  • A machine that makes paper cups has many parts, including a barrel cam, an index, and a turret. When the barrel cam, which is the main operating part of the machine, rotates, it pushes the roller fixed on the index, and paper cups are formed as the turret connected to the index rotates. Therefore, the performance of the machine is affected by the barrel cam. In this study, the program for designing barrel cam, which creates the profile of the cam is developed using MATLAB. This profile is used to develop a 3D CAD model by using a 3D CAD program. Dynamic models containing the barrel cam are created on the basis of the profile and 3D laser scan of the barrel cam. Further, the rotation angle of the index in the machine is measured using a high-speed camera. The rotation angles of the dynamics models are compared to verify the effectiveness of the program.

Image-based Visual Servoing for Automatic Recharging of Mobile Robot (이동로봇의 자동충전을 위한 영상기반 비쥬얼 서보잉 방법)

  • Song, Ho-Bum;Cho, Jae-Seung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.664-670
    • /
    • 2007
  • This study deals with image-based visual servoing for automatic recharging of mobile robot. Because mobile robot must be recharged periodically, it is necessary to detect and move to docking station. Generally, laser scanner is used for detect of position of docking station. CCD Camera is also used for this purpose. In case of using cameras, the position-based visual servoing method is widely used. But position-based visual servoing method requires the accurate calibration and it is hard and complex work. Another method using cameras is image-based visual servoing. Recently, image based visual servoing is widely used for robotic application. But it has a problem that cannot have linear trajectory in the 3-dimensional space. Because of this weak point, image-based visual servoing has a limit for real application. In case of 2-dimensional movement on the plane, it has also similar problem. In order to solve this problem, we point out the main reason of the problem of the resolved rate control method that has been generally used in the image-based visual servoing and we propose an image-based visual servoing method that can reduce the curved trajectory of mobile robot in the cartesian space.

A Study on the Distribution of Injected Urea into the Exhaust Pipe in a SCR System (선택적 환원촉매(SCR)장치에서 배기관내에 분사된 환원제 분포에 관한 연구)

  • Choi, J.H.;Lee, Y.C.;LEE, S.W.;Cho, Y.S.;LEE, S.H.;Oh, S.K.;Dong, Y.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.16-21
    • /
    • 2010
  • This research focused on the spray and distribution characteristics of urea solution by applying flow visualization techniques and did durability and driver test on injectors as well. The spray characteristics of urea solution was observed by CCD camera. Also, the distribution characteristics of urea solution was evaluated quantitatively as well by using 3D laser scanner equipment. It was considered that it was reasonable to use the injector for gasoline engine in order to inject the urea. The best distribution chart result was observed near 45cm distance difference between catalyst and urea spray injector. As a result of trapped urea distribution chart analysis, optimal pressure and volumetric flow rates of air and urea were derived in order to improve the distribution of Urea. This information may contribute to provide fundamental data in the future.

A Framework for Building Reconstruction Based on Data Fusion of Terrestrial Sensory Data

  • Lee, Impyeong;Choi, Yunsoo
    • Korean Journal of Geomatics
    • /
    • v.4 no.2
    • /
    • pp.39-45
    • /
    • 2004
  • Building reconstruction attempts to generate geometric and radiometric models of existing buildings usually from sensory data, which have been traditionally aerial or satellite images, more recently airborne LIDAR data, or the combination of these data. Extensive studies on building reconstruction from these data have developed some competitive algorithms with reasonable performance and some degree of automation. Nevertheless, the level of details and completeness of the reconstructed building models often cannot reach the high standards that is now or will be required by various applications in future. Hence, the use of terrestrial sensory data that can provide higher resolution and more complete coverage has been intensively emphasized. We developed a fusion framework for building reconstruction from terrestrial sensory data, that is, points from a laser scanner, images from digital camera, and absolute coordinates from a total station. The proposed approach was then applied to reconstructing a building model from real data sets acquired from a large complex existing building. Based on the experimental results, we assured that the proposed approach cam achieve high resolution and accuracy in building reconstruction. The proposed approach can effectively contribute in developing an operational system producing large urban models for 3D GIS with reasonable resources.

  • PDF

Improved Georeferencing of a Wearable Indoor Mapping System Using NDT and Sensor Integration

  • Do, Linh Giang;Kim, Changjae;Kim, Han Sae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.425-433
    • /
    • 2020
  • Three-dimensional data has been used for different applications such as robotics, building reconstruction, and so on. 3D data can be generated from an optical camera or a laser scanner. Especially, a wearable multi-sensor system including the above-mentioned sensors is an optimized structure that can overcome the drawbacks of each sensor. After finding the geometric relationships between sensors, georeferencing of the datasets acquired from the moving system, should be carried out. Especially, in an indoor environment, error propagation always causes problem in the georeferencing process. To improve the accuracy of this process, other sources of data were used to combine with LiDAR (Light Detection and Ranging) data, and various registration methods were also tested to find the most suitable way. More specifically, this paper proposed a new process of NDT (Normal Distribution Transform) to register the LiDAR point cloud, with additional information from other sensors. For real experiment, a wearable mapping system was used to acquire datasets in an indoor environment. The results showed that applying the new process of NDT and combining LiDAR data with IMU (Inertial Measurement Unit) information achieved the best result with the RMSE 0.063 m.