• Title/Summary/Keyword: Camera-laser scanner

Search Result 67, Processing Time 0.026 seconds

Adjustment of Exterior Orientation of the Digital Aerial Images using LiDAR Points

  • Yoon, Jong-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.485-491
    • /
    • 2008
  • LiDAR systems are usually incorporated a laser scanner and GPS/INS modules with a digital aerial camera. LiDAR point clouds and digital aerial images acquired by the systems provide complementary spatial information on the ground. In addition, some of laser scanners provide intensity, radiometric information on the surface of the earth. Since the intensity is unnecessary of registration and provides the radiometric information at a certain wavelength on the location of LiDAR point, it can be a valuable ancillary information but it does not deliver sufficient radiometric information compared with digital images. This study utilize the LiDAR points as ground control points (GCPs) to adjust exterior orientations(EOs) of the stereo images. It is difficult to find exact point of LiDAR corresponding to conjugate points in stereo images, but this study used intensity of LiDAR as an ancillary data to find the GCPs. The LiDAR points were successfully used to adjust EOs of stereo aerial images, therefore, successfully provided the prerequisite for the precise registration of the two data sets from the LiDAR systems.

Beach Sand Grain Size Analysis using Commercial Flat-bed Scanner (범용 평판 스캐너를 이용한 해빈 모래의 입도분석)

  • Cheon, Se-Hyeon;Ahn, Kyungmo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.301-310
    • /
    • 2013
  • For analyzing sand grain size, a specialized high-priced instrument has been used, such as sieve shaker, video camera, laser particle size analyzer, and microscope. Among these, the sieve shaker is commonly used because it is not only cheaper than others but also provides reasonable accuracy. However, it takes a long time and makes lots of dust and noise. In this study, a cheaper and easier method which can replace the sieve shaker is proposed. By using a commercial flat-bed scanner and a darkroom box, the sand size distribution can be analyzed. The darkroom box makes sand images clear and protects the glass of the scanner from being scratched. Comparison between the present method and sieve analysis shows that the present method not only has an accuracy comparable to the sieve analysis but also can save time and effort.

Monitoring System to Measure the Waste Volume of Landfill Facility using 3D Laser Scanner (3D 레이저 스캐너를 이용한 매립장의 체적 계측을 위한 모니터링시스템)

  • Cho, Sung-Youn;Lee, Young-Dae;Ryu, Seung-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.135-140
    • /
    • 2013
  • In this paper, we discussed about the volume monitoring system of a landfill facility. We proposed the waste volume calculation method using the point cloud of the surface of three dimensional object by measurement of the point cloud by the three dimensional scanner, which is based upon the robot technique. This computes not only the quantity of waste volume for continuos monitoring but also it helps not only to predict the evaluation factor of the usable age of a landfill. facility. Furthermore, the measuring system of waste volume was applied to the landfill facility in Ansung city.

Measurement of the 3-Dimensional Shapes of Specular Objects by Using Double Pass Retroreflection (재귀반사 특성을 이용한 경면물체의 3차원 형상 측정)

  • Park, W.S.;Ryu, Y.K.;Cho, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.64-72
    • /
    • 1996
  • This paper is aimed to develop an optical method for measuring 3-dimensional shapes of specular objects having curved surfaces. The existing methods measuring the shapes of specular objects have several common disadvantages: they may not work properly if the surface is highly specular like mirror surface or if the reflectance property is not uniform over the surface. And, they often require the a priori knowledege about the surface reflectance. To overcome these disadvantages, the measurement using double pass retroreflection method is proposed in this paper. For this measurement principle, an experimental measuring system is designed and prepared which is composed of a galvanometer scanner, a beam splitter, a laser source, a CCD camera, and a reflector made of retroreflective material. To verify the effectiveness of the measurement system a series of experiments are performaed for various specular objects. The results observed from the experiments show that the developed optical sensing system can be an effective mean of measuring the 3-D shapes of specular objects.

  • PDF

DESIGN OF AN UNMANNED GROUND VEHICLE, TAILGATOR THEORY AND PRACTICE

  • KIM S. G.;GALLUZZO T.;MACARTHUR D.;SOLANKI S.;ZAWODNY E.;KENT D.;KIM J. H.;CRANE C. D.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.83-90
    • /
    • 2006
  • The purpose of this paper is to describe the design and implementation of an unmanned ground vehicle, called the TailGator at CIMAR (Center for Intelligent Machines and Robotics) of the University of Florida. The TailGator is a gas powered, four-wheeled vehicle that was designed for the AUVSI Intelligent Ground Vehicle Competition and has been tested in the contest for 2 years. The vehicle control model and design of the sensory systems are described. The competition is comprised of two events called the Autonomous Challenge and the Navigation Challenge: For the autonomous challenge, line following, obstacle avoidance, and detection are required. Line following is accomplished with a camera system. Obstacle avoidance and detection are accomplished with a laser scanner. For the navigation challenge, waypoint following and obstacle detection are required. The waypoint navigation is implemented with a global positioning system. The TailGator has provided an educational test bed for not only the contest requirements but also other studies in developing artificial intelligence algorithms such as adaptive control, creative control, automatic calibration, and internet-base control. The significance of this effort is in helping engineering and technology students understand the transition from theory to practice.

Extracting Three-Dimensional Geometric Information of Roads from Integrated Multi-sensor Data using Ground Vehicle Borne System (지상 이동체 기반의 다중 센서 통합 데이터를 활용한 도로의 3차원 기하정보 추출에 관한 연구)

  • Kim, Moon-Gie;Sung, Jung-Gon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.68-79
    • /
    • 2008
  • Ground vehicle borne system which is named RoSSAV(Road Safety Survey and Analysis Vehicle) developed in KICT(Korea Institute of Construction Technology) can collect road geometric data. This system therefore is able to evaluate the road safety and analyze road deficient sections using data collected along the roads. The purpose of this study is to extract road geometric data for 3D road modeling in dangerous road section and The system should be able to quickly provide more accurate data. Various sensors(circular laser scanner, GPS, INS, CCD camera and DMI) are installed in moving object and collect road environment data. Finally, We extract 3d road geometry(center, boundary), road facility and slope using integrated multi-sensor data.

  • PDF

Application of New Measurement Method for Improvement of Rock Joint Roughness Underestimation (암석 절리면 거칠기 과소평가의 개선을 위한 새로운 측정방법의 적용)

  • Hong, Eun-Soo;Lee, Joo-Gong;Lee, Jong-Sub;Lee, In-Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.133-142
    • /
    • 2006
  • Many methods have been tried to more correctly measure rock joint roughness. However, true roughness may be distorted and underestimated due to the sampling interval and measurement method. Thus, currently used measurement methods produce a dead zone and distort roughness profiles. The purpose of this study is to suggest new roughness measurement method by a camera-type 3D scanner as an alternative of currently used methods. First, the underestimation of artificial roughness is analyzed by using the current measurement method such as laser profilometry. Second, we replicate eight specimens from two rock joint surfaces, and digitize by a 3D scanner. Then, the roughness coefficient values obtained from eight numbers of 3D surface data and from three hundred twenty numbers of 2D profiles data are analyzed by using current and new measurement methods. The artificial simulation confirms that the sampling interval is one of main factors for the distortion of roughness and shows that inclination of waviness may not be considered any current methods. The experimental results show that the camera-type 3D scanner produces 10% larger roughness values than current methods. As the proposed new method is a fast, high precision and more accurate method for the roughness measurement, it should be a promising technique in this area.

4S-Van: A Prototype Mobile Mapping System for GIS

  • Lee, Seung-Yong;Kim, Seong-Baek;Choi, Ji-Hoon;Lee, Jong-Hun
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.91-97
    • /
    • 2003
  • The design of Graphic Information System(GIS) in various applications is suffering from the difficulty of data acquisition, which is labor-intensive and time consuming. In order to provide the spatial data rapidly and accurately, 4S-Van, a prototype mobile mapping system, has been developed. The 4S-Van consists of 1)Global Positioning System(GPS), Inertial Navigation System(INS) for estimating the geographic position and attitude of the moving van, i.e.,(x, y, z) and the direction of the Van, 2) Charge Coupled Device(CCD) camera and laser scanner for capturing images and for measuring depth from geographic objects, and 3) External Synchronization Device(ESD) and industrial PC for synchronizing data from GPS/INS/CCD camera and for storing the data. In this paper, we present the design and implementation of the proto-Dpe 4S-Van system for spatial data acquisition for various GIS applications.

Research of the Unmanned Vehicle Control and Modeling for Lane Tracking and Obstacle Avoidance

  • Kim, Sang-Gyum;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.932-937
    • /
    • 2003
  • In this paper, we will explain about the unmanned vehicle control and modeling for combined obstacle avoidance and lane tracking. First, obstacle avoidance is considered as one of the important technologies in the unmanned vehicle. It is consisted by two parts: the first part includes the longitudinal control system for the acceleration and deceleration and the second part is the lateral control system for the steering control. Each system uses to the obstacle avoidance during the vehicle moving. Therefore, we propose the method of vehicle control, modeling and obstacle avoidance. Second, we describe a method of lane tracking by means of vision system. It is important in the unmanned vehicle and mobile robot system. In this paper, we deal with lane tracking and image processing method and it is including lane detection method, image processing algorithm and filtering method.

  • PDF

Automatic Recognition of In-Process mold Dies Based on Reverse Engineering Technology (형상 역공학을 통한 공정중 금형 가공물의 자동인식)

  • 김정권;윤길상;최진화;김동우;조명우;박균명
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.420-425
    • /
    • 2003
  • Generally, reverse engineering means getting CAD data from unidentified shape using vision or 3D laser scanner system. In this paper, we studied unidentified model by machine vision based reverse engineering system to get information about in-processing model. Recently, vision technology is widely used in current factories, because it could inspect the in-process object easily, quickly, accurately. The following tasks were mainly investigated and implemented. We obtained more precise data by corning camera's distortion, compensating slit-beam error and revising acquired image. Much more, we made similar curves or surface with B-spline approximation for precision. Until now, there have been many case study of shape recognition. But it was uncompatible to apply to the field, because it had taken too many processing time and has frequent recognition failure. This paper propose recognition algorithm that prevent such errors and give applications to the field.

  • PDF