• Title/Summary/Keyword: Camera sensor

Search Result 1,274, Processing Time 0.022 seconds

Learning the nonlinearity of a camera calibration model using GMDH algorithm (GMDH 알고리즘에 의한 카메라 보정 모델의 비선형성 학습)

  • Kim, Myoung-Hwan;Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.109-115
    • /
    • 2005
  • Calibration is a prerequisite procedure for employing a camera as a 3D sensor in an automated machines like robots. As accurate sensing is possible only when the vision sensor is calibrated accurately, many different approaches and models have been proposed for increasing calibration accuracy. Particularly an important factor which greatly affects the calibration accuracy is the nonlinearity in the mapping between 3D world and corresponding 2D image. In this paper GMDH algorithm is used to learn the nonlinearity without physical modelling. The technique proposed can be effective in various situations where the levels of noises and characteristics of nonlinear distortion are different. In simulations and an experiment, the proposed technique showed good and reliable results.

A Study of the 3D-Reconstruction of indoor using Stereo Camera System (스테레오 카메라를 이용한 실내환경의 3차원 복원에 관한 연구)

  • Lee Dong-Hun;Um Dae-Youn;Kang Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.42-47
    • /
    • 2005
  • In this papcr, we address the 3D reconstruction of the indoor circumstance using what the data is extracted by a pall of image from Stereo Camera. Generally sucaking, there arc three methods to extract 3-Dimensional data using IR sensor, Laser sensor and Stereo camera sensor. The best is stereo camera sensor which can show a high performance at a reasonable price. We used 'Window Correlation Matching Method' to extract 3-Dimensional data in stereo image. We proposed new Method to reduce error data, said 'Histogram Weighted Hough Transform'. Owing to this mettled, we reduced error data in each stereo image. So reconstruction is well done. 3-Dimensional Reconstruction is accomplished by using the DirectX that is well known as 3D-Game development tool. We show that the stereo camera can be not only used to extract 3-dimensional data but also applied to reconstruct the 3-Dimensional circumstance. And we try to reduce the error data using various method.

A Study on Depth Information Acquisition Improved by Gradual Pixel Bundling Method at TOF Image Sensor

  • Kwon, Soon Chul;Chae, Ho Byung;Lee, Sung Jin;Son, Kwang Chul;Lee, Seung Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.15-19
    • /
    • 2015
  • The depth information of an image is used in a variety of applications including 2D/3D conversion, multi-view extraction, modeling, depth keying, etc. There are various methods to acquire depth information, such as the method to use a stereo camera, the method to use the depth camera of flight time (TOF) method, the method to use 3D modeling software, the method to use 3D scanner and the method to use a structured light just like Microsoft's Kinect. In particular, the depth camera of TOF method measures the distance using infrared light, whereas TOF sensor depends on the sensitivity of optical light of an image sensor (CCD/CMOS). Thus, it is mandatory for the existing image sensors to get an infrared light image by bundling several pixels; these requirements generate a phenomenon to reduce the resolution of an image. This thesis proposed a measure to acquire a high-resolution image through gradual area movement while acquiring a low-resolution image through pixel bundling method. From this measure, one can obtain an effect of acquiring image information in which illumination intensity (lux) and resolution were improved without increasing the performance of an image sensor since the image resolution is not improved as resolving a low-illumination intensity (lux) in accordance with the gradual pixel bundling algorithm.

Implementation of a Helmet Azimuth Tracking System in the Vehicle (이동체 내의 헬멧 방위각 추적 시스템 구현)

  • Lee, Ji-Hoon;Chung, Hae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.529-535
    • /
    • 2020
  • It is important to secure the driver's external field view in armored vehicles surrounded by iron armor for preparation for the enemy's firepower. For this purpose, a 360 degree rotatable surveillance camera is mounted on the vehicle. In this case, the key idea is to recognize the head of the driver wearing a helmet so that the external camera rotated in exactly the same direction. In this paper, we introduce a method that uses a MEMS-based AHRS sensor and a illuminance sensor to compensate for the disadvantages of the existing optical method and implements it with low cost. The key idea is to set the direction of the camera by using the difference between the Euler angles detected by two sensors mounted on the camera and the helmet, and to adjust the direction with illuminance sensor from time to time to remove the drift error of sensors. The implemented prototype will show the camera's direction matches exactly in driver's one.

Development of a Sensor System for Real-Time Posture Measurement of Mobile Robots (이동 로봇의 실시간 자세 추정을 위한 센서 시스템의 개발)

  • 이상룡;권승만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2191-2204
    • /
    • 1993
  • A sensor system has been developed to measure the posture(position and orientation) of mobile robots working in industrial environments. The proposed sensor system consists of a CCD camera, retro-reflective landmarks, a strobe unit and an image processing board. The proposed hardware system can be built in economic price compared to commercial vision systems. The system has the capability of measuring the posture of mobile robots within 60 msec when a 386 personal computer is used as the host computer. The experimental results demonstrated a remarkable performance of the proposed sensor system in the posture measurement of mobile robots - the average error in position is less than 3 mm and the average error in orientation is less than 1.5.

A Study on Taekwondo Training System using Hybrid Sensing Technique

  • Kwon, Doo Young
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.12
    • /
    • pp.1439-1445
    • /
    • 2013
  • We present a Taekwondo training system using a hybrid sensing technique of a body sensor and a visual sensor. Using a body sensor (accelerometer), rotational and inertial motion data are captured which are important for Taekwondo motion detection and evaluation. A visual sensor (camera) captures and records the sequential images of the performance. Motion chunk is proposed to structuralize Taekwondo motions and design HMM (Hidden Markov Model) for motion recognition. Trainees can evaluates their trial motions numerically by computing the distance to the standard motion performed by a trainer. For motion training video, the real-time video images captured by a camera is overlayed with a visualized body sensor data so that users can see how the rotational and inertial motion data flow.

DESIGN OF CAMERA CONTROLLER FOR HIGH RESOLUTION SPACE-BORN CAMERA SYSTEM

  • Heo, Haeng-Pal;Kong, Jong-Pil;Kim, Young-Sun;Park, Jong-Euk;Yong, Sang-Soon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.130-133
    • /
    • 2007
  • In order to get high quality and high resolution image data from the space-borne camera system, the image chain from the sensor to the user in the ground-station need to be designed and controlled with extreme care. The behavior of the camera system needs to be controlled by ground commands to support on-orbit calibration and to adjust imaging parameters and to perform early stage on-orbit image correction, like gain and offset control, non-uniformity correction, etc. The operation status including the temperature of the sensor needs to be transferred to the ground-station. The preparation time of the camera system for imaging with specific parameters should be minimized. The camera controller needs to synchronize the operation of cameras for every channel and for every spectral band. Detail timing information of the image data needs to be provided for image data correction at ground-station. In this paper, the design of the camera controller for the AEISS on KOMPSAT-3 will be introduced. It will be described how the image chain is controlled and which imaging parameters are to be adjusted The camera controller will have software for the flexible operation of the camera by the ground-station operators and it can be reconfigured by ground commands. A simple concept of the camera operations and the design of the camera controller, not only with hardware but also with controller software are to be introduced in this paper.

  • PDF

Algorithm of Optical Camera Communications Using Rolling-Shutter Effect (롤링셔터 효과를 이용한 광학 카메라통신 알고리즘)

  • Lee, Jungho;Kim, Nayeong;Ju, MinChul;Park, Youngil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.454-460
    • /
    • 2016
  • Unlike conventional visible light communications (VLC) adopting photo detectors (PD), optical camera communications (OCC) employs cameras in detecting the transmitted data. Especially, the data rate of OCC can be enhanced by using the principle of rolling-shutter, which is the operating scheme of a CMOS image sensor. In this study, we consider a novel OCC system for high-speed real time video processing to transmit high speed data from LED and to acquire image utilizing rolling-shutter effect of CMOS image sensor. Also, we demonstrate the improved performance of proposed system using a test-bed.

A NEW APPROACH OF CAMERA MODELING FOR LINEAR PUSHBROOM IMAGES

  • Jung, Hyung-Sup;Kang, Myung-Ho;Lee, Yong-Woong;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1162-1164
    • /
    • 2003
  • The methods of the geometric reconstruction and sensor calibration of satellite linear pushbroom images are investigated. The model of the sensor used is based on the SPOT model that is developed by Kraiky. The satellite trajectory is a Keplerian trajectory in the approximation. Four orbit parameters, longitude of the ascending node(${\omega}$), inclination of the orbit plan(I), latitude argument of the satellite(W) and distance between earth center and satellite, are used for the camera modeling. Time-dependent orbit parameters are expressed by quadratic polynomials. SPOT-5 images have been used for validation tests. The results are that the RMSE acquired from 20 GCPs is 1.763m and the RMSE of 5 checking points 2.470m. Because the ground resolution of SPOT-5 is 2.5m, the result obtained in this study has a good accuracy. It demonstrates that the sensor model developed by this study can be used to reconstruct the geometry of satellite image using pushbroom camera.

  • PDF

Formation of Indium Bumps on Micro-pillar Structures through BCB Planarization (BCB 평탄화를 활용한 마이크로 기둥 구조물 위의 인듐 범프 형성 공정)

  • Park, Min-Su
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.57-61
    • /
    • 2021
  • A formation process of indium bump arrays on micro-pillar structures is proposed. The space to form indium bump on the narrow structures can be secured applying the benzocyclobutene (BCB) planarization and its etch-back process. We exhibit a detailed overview of the process steps involved in the fabrication of 320×256 hybrid camera sensor for short-wavelength infrared (SWIR) detection. The shear strength of the BCB, which has undergone the different processes, is extracted by quartz crystal microbalance measurement. The shear strength of the BCB is three orders of magnitude higher than that of the indium bump itself. The measured dark current distribution of the fabricated SWIR camera sensor indicates the suggested process of indium bumps can be useful for embodying highly sensitive infared camera sensors.