This study aims to demonstrate the feasibility of a visual servoing-based paired structured light (SL) robot for estimating structural displacement under various external loads. The former paired SL robot, which was proposed in the previous study, was composed of two screens facing with each other, each with one or two lasers and a camera. It was found that the paired SL robot could estimate the translational and rotational displacement each in 3-DOF with high accuracy and low cost. However, the measurable range is fairly limited due to the limited screen size. In this paper, therefore, a visual servoing-based 2-DOF manipulator which controls the pose of lasers is introduced. By controlling the positions of the projected laser points to be on the screen, the proposed robot can estimate the displacement regardless of the screen size. We performed various simulations and experimental tests to verify the performance of the newly proposed robot. The results show that the proposed system overcomes the range limitation of the former system and it can be utilized to accurately estimate the structural displacement.
International journal of advanced smart convergence
/
제4권2호
/
pp.20-28
/
2015
In this paper, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame with posture variation and camera view point adaptation by employing the non-adaptive random projections that preserve the structure of the image feature space of objects. The existing online tracking algorithms update models with features from recent video frames and the numerous issues remain to be addressed despite on the improvement in tracking. The data-dependent adaptive appearance models often encounter the drift problems because the online algorithms does not get the required amount of data for online learning. So, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame.
Nguyen, Van Ngoc Nghia;Nguyen, Thanh Binh;Chung, Sun-Tae
한국멀티미디어학회논문지
/
제22권2호
/
pp.167-177
/
2019
Even though so much progresses have been achieved in Multiple Object Tracking (MOT), most of reported MOT methods are not still satisfactory for commercial embedded products like Pan-Tilt-Zoom (PTZ) camera. In this paper, we propose a real-time multiple pedestrians tracking method for embedded environments. First, we design a new light weight convolutional neural network(CNN)-based pedestrian detector, which is constructed to detect even small size pedestrians, as well. For further saving of processing time, the designed detector is applied for every other frame, and Kalman filter is employed to predict pedestrians' positions in frames where the designed CNN-based detector is not applied. The pose orientation information is incorporated to enhance object association for tracking pedestrians without further computational cost. Through experiments on Nvidia's embedded computing board, Jetson TX2, it is verified that the designed pedestrian detector detects even small size pedestrians fast and well, compared to many state-of-the-art detectors, and that the proposed tracking method can track pedestrians in real-time and show accuracy performance comparably to performances of many state-of-the-art tracking methods, which do not target for operation in embedded systems.
Nowdays, many people suffer from the neck pain due to forward head posture(FHP) and text neck(TN). To assess the severity of the FHP and TN the craniovertebral angle(CVA) is used in clinincs. However, it is difficult to monitor the neck posture using the CVA in daily life. We propose a new method using the cervical flexion angle(CFA) obtained from a wearable sensor to monitor neck posture in daily life. 15 participants were requested to pose FHP and TN. The CFA from the wearable sensor was compared with the CVA observed from a 3D motion camera system to analyze their correlation. The determination coefficients between CFA and CVA were 0.80 in TN and 0.57 in FHP, and 0.69 in TN and FHP. From the monitoring the neck posture while using laptop computer for 20 minutes, this wearable sensor can estimate the CVA with the mean squared error of 2.1 degree.
본 논문에서는 운동 재활 서비스에 제공할 수 있는 엣지 컴퓨팅 기반의 운동 데이터 수집 디바이스를 제안한다. 기존 클라우드 컴퓨팅 방식에서는 사용자가 급증하는 경우 데이터 센터의 처리량이 증가하여 많은 지연 현상을 발생하는 문제점을 가진다. 본 논문에서는 엣지 컴퓨팅을 이용하여 사용자측에서 3차원 카메라를 통한 영상 정보를 기반으로 포즈 에스티메이션을 적용한 신체 관절의 키포인트 위치를 측정하고 추정하여 서버에 전송하는 디바이스를 설계하고 구현하였다. 본 연구의 결과를 통하여 클라우드 시스템에 부하없이 원활한 정보 수집 환경을 구축할 수 있으며 운동 재활을 원하는 다양한 사용자를 대상으로 IoT 및 엣지 컴퓨팅 기술을 통한 개인 맞춤형 재활운동 코칭 시스템에 활용될 수 있을 것이다.
Ensuring the safety of a structure necessitates that repairs are carried out based on accurate inspections and records of damage information. Traditional methods of recording damage rely on individual paper-based documents, making it challenging for inspectors to accurately record damage locations and track chronological changes. Recent research has suggested the adoption of building information modeling (BIM) to record detailed damage information; however, localizing damages on a BIM model can be time-consuming. To overcome this limitation, this study proposes a method to automatically localize damages on a BIM model in real-time, utilizing consecutive images and measurements from an inertial measurement unit in close proximity to damages. The proposed method employs a visual-inertial odometry algorithm to estimate the camera pose, detect damages, and compute the damage location in the coordinate of a prebuilt BIM model. The feasibility and effectiveness of the proposed method were validated through an experiment conducted on a campus building. Results revealed that the proposed method successfully localized damages on the BIM model in real-time, with a root mean square error of 6.6 cm.
본 논문에서는 인공위성 근접운용을 위한 단일 영상 기반 상대항법에 대한 연구를 수행하였다. 추적 위성은 하나의 카메라 센서만을 이용하여 표적 위성을 관측하고 영상추적을 통해 표적 위성의 위치 정보를 얻게 된다. 그러나 단일 영상만을 이용할 경우, 표적과의 상대 거리에 해당하는 깊이 정보를 얻기 힘들다. 이러한 문제를 해결하기 위해 능동 윤곽 기법을 영상 추적에 적용하였다. 능동 윤곽 기법을 통해 표적의 이미지 크기를 얻을 수 있고 이러한 형상 정보를 바탕으로 상대 거리를 간접적으로 계산할 수 있다. 두 인공 위성이 상대 운동을 하는 우주환경을 구현하고 가상의 카메라 영상을 생성하기 위해 3차원 가상현실이 이용되었다. 추적 위성은 UKF를 이용하여 표적 위성에 대한 상대위치를 추정하면서 글라이드슬로프 접근 기법을 이용하여 표적 위성에 근접한다. 상대항법의 성능을 분석하기 위해서 폐 루프 시뮬레이션을 수행하였다.
본 논문에서는 도심 영상에 대해 맨하탄 좌표계를 추정하는 합성곱 신경망(Convolutional Neural Network) 기반의 시스템을 제안한다. 도심 영상에서 맨하탄 좌표계를 추정하는 것은 영상 조정, 3차원 장면 복원 등 컴퓨터 그래픽스 및 비전 문제 해결의 기본이 된다. 제안하는 합성곱 신경망은 GoogLeNet[1]을 기반으로 구성한다. 합성곱 신경망을 훈련하기 위해 구글 스트리트 뷰 API로 영상을 수집하고 기존 캘리브레이션 방법으로 맨하탄 좌표계를 계산하여 데이터셋을 생성한다. 장면마다 새롭게 합성곱 신경망을 학습해야하는 PoseNet[2]과 달리, 본 논문에서 제안하는 시스템은 장면의 구조를 학습하여 맨하탄 좌표계를 추정하기 때문에 학습되지 않은 새로운 장면에 대해서도 맨하탄 좌표계를 추정한다. 제안하는 방법은 학습에 참여하지 않은 구글 스트리트 뷰 영상을 검증 데이터로 테스트하였을 때 $3.157^{\circ}$의 중간 오차로 맨하탄 좌표계를 추정하였다. 또한, 동일 검증 데이터에 대해 제안하는 방법이 기존 맨하탄 좌표계 추정 알고리즘[3]보다 더 낮은 중간 오차를 보이는 것을 확인하였다.
최근 COVID-19 확산 방지를 위한 공공장소에서는 최소 1m 이상을 유지하는 물리적 거리두기 정책을 실행하고 있다. 본 논문에서는 드론과 CCTV가 취득한 스테레오 영상에서 실시간으로 사람들 간의 거리를 추정하는 방법과 추정된 거리에서 1m 이내의 객체를 인식하는 자동화 시스템을 제안한다. 기존의 CCTV를 이용하여 다중 객체 간의 거리 추정에 사용되었던 방법의 문제점으로는 한 대의 CCTV만을 이용하여 객체의 3차원 정보를 얻지 못한다는 것이다. 선, 후행하거나 겹쳐진 사람 간의 거리를 구하기 위해서는 3차원 정보가 필요하기 때문이다. 또한, 일반적인 Detected Bounding Box를 사용하여 영역 안에서 사람이 존재하는 정확한 좌표를 얻지 못한다. 따라서 사람이 존재하는 정확한 위치 정보를 얻기 위해 스켈레톤 추출하여 관절 키포인트의 2차원 좌표를 획득한 후, Stereo Vision을 이용한 카메라 캘리브레이션을 적용하여 3차원 좌표로 변환한다. 3차원으로 변환된 관절 키포인트의 중심좌표를 계산하고 객체 간 사이의 거리를 추정한다. 3차원 좌표의 정확성과 객체(사람) 간의 거리 추정 실험을 수행한 결과, 1m 이내에 존재하는 다수의 사람 간의 거리 추정에서 0.098m 이내 평균오차를 보였다.
재해로 인한 부상 및 만성 질환 등의 다양한 요인으로 신체적 장애를 가진 환자, 혹은 신체의 노화로 인하여 몸의 움직임의 범위가 제한된 노인과 같은 경우, 치료의 일종으로 병원에서의 재활 프로그램의 참여를 권장 받는 경우가 있다. 그러나 이들은 신체의 거동이 불편하므로 보호자의 동행 없이 재활 프로그램의 참여를 위한 이동이 쉽지 않다. 또한, 병원에서는 각각의 환자 및 노인들에게 재활 운동을 지도해주어야 하는 불편함이 존재한다. 이러한 이유로, 이 논문에서는 모션 인식을 통하여 집에서도 타인의 도움 없이 재활 운동이 가능한 원격 재활 프로그램을 개발하였다. 해당 시스템은 사용자 집의 스테레오 카메라와 컴퓨터를 이용하여 구동할 수 있으며, 모션 인식 기능을 통하여 사용자의 실시간 운동 상태 확인이 가능하다. 사용자가 재활 운동에 참여하는 동안, 시스템은 사용자의 특정 부위의 관절가동범위(Joint ROM; Joint Range of Motion)를 저장하여 신체 기능의 향상도를 확인한다. 이 논문에서는 시스템의 검증을 위하여 총 4명의 실험군이 참여하였으며, 총 3종류의 운동을 각 9회씩 반복한 데이터를 이용하여 각 실험군의 시작 및 마지막 운동의 관절가동범위의 차이를 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.