• 제목/요약/키워드: Camera exterior parameters

Search Result 43, Processing Time 0.021 seconds

Single Photo Resection Using Cosine Law and Three-dimensional Coordinate Transformation (코사인 법칙과 3차원 좌표 변환을 이용한 단사진의 후방교회법)

  • Hong, Song Pyo;Choi, Han Seung;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.189-198
    • /
    • 2019
  • In photogrammetry, single photo resection is a method of determining exterior orientation parameters corresponding to a position and an attitude of a camera at the time of taking a photograph using known interior orientation parameters, ground coordinates, and image coordinates. In this study, we proposed a single photo resection algorithm that determines the exterior orientation parameters of the camera using cosine law and linear equation-based three-dimensional coordinate transformation. The proposed algorithm first calculated the scale between the ground coordinates and the corresponding normalized coordinates using the cosine law. Then, the exterior orientation parameters were determined by applying linear equation-based three-dimensional coordinate transformation using normalized coordinates and ground coordinates considering the calculated scale. The proposed algorithm was not sensitive to the initial values by using the method of dividing the longest distance among the combinations of the ground coordinates and dividing each ground coordinates, although the partial derivative was required for the nonlinear equation. In addition, since the exterior orientation parameters can be determined by using three points, there was a stable advantage in the geometrical arrangement of the control points.

Georeferencing of Indoor Omni-Directional Images Acquired by a Rotating Line Camera (회전식 라인 카메라로 획득한 실내 전방위 영상의 지오레퍼런싱)

  • Oh, So-Jung;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.211-221
    • /
    • 2012
  • To utilize omni-directional images acquired by a rotating line camera for indoor spatial information services, we should register precisely the images with respect to an indoor coordinate system. In this study, we thus develop a georeferencing method to estimate the exterior orientation parameters of an omni-directional image - the position and attitude of the camera at the acquisition time. First, we derive the collinearity equations for the omni-directional image by geometrically modeling the rotating line camera. We then estimate the exterior orientation parameters using the collinearity equations with indoor control points. The experimental results from the application to real data indicate that the exterior orientation parameters is estimated with the precision of 1.4 mm and $0.05^{\circ}$ for the position and attitude, respectively. The residuals are within 3 and 10 pixels in horizontal and vertical directions, respectively. Particularly, the residuals in the vertical direction retain systematic errors mainly due to the lens distortion, which should be eliminated through a camera calibration process. Using omni-directional images georeferenced precisely with the proposed method, we can generate high resolution indoor 3D models and sophisticated augmented reality services based on the models.

Improving Precision of the Exterior Orientation and the Pixel Position of a Multispectral Camera onboard a Drone through the Simultaneous Utilization of a High Resolution Camera (고해상도 카메라와의 동시 운영을 통한 드론 다분광카메라의 외부표정 및 영상 위치 정밀도 개선 연구)

  • Baek, Seungil;Byun, Minsu;Kim, Wonkook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2021
  • Recently, multispectral cameras are being actively utilized in various application fields such as agriculture, forest management, coastal environment monitoring, and so on, particularly onboard UAV's. Resultant multispectral images are typically georeferenced primarily based on the onboard GPS (Global Positioning System) and IMU (Inertial Measurement Unit)or accurate positional information of the pixels, or could be integrated with ground control points that are directly measured on the ground. However, due to the high cost of establishing GCP's prior to the georeferencing or for inaccessible areas, it is often required to derive the positions without such reference information. This study aims to provide a means to improve the georeferencing performance of a multispectral camera images without involving such ground reference points, but instead with the simultaneously onboard high resolution RGB camera. The exterior orientation parameters of the drone camera are first estimated through the bundle adjustment, and compared with the reference values derived with the GCP's. The results showed that the incorporation of the images from a high resolution RGB camera greatly improved both the exterior orientation estimation and the georeferencing of the multispectral camera. Additionally, an evaluation performed on the direction estimation from a ground point to the sensor showed that inclusion of RGB images can reduce the angle errors more by one order.

A Study on the Geometric Correction of a CCD Camera Scanner Using the Exterior Orientation Parameters (외부표정요소를 이용한 CCD 카메라 스캐너의 기하학적 왜곡 보정기법 연구)

  • 안기원;문명상
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.2
    • /
    • pp.69-77
    • /
    • 1993
  • Investigation is given to the detailed procedure of a computer assisted automatic correction for scanning errors of the digital images of close-range photographs scanned by the CCD camera scanner. After determination of the exterior orientation parameters, photo coordinates of the all pixels were calculated using collinearity equation. For the generation of geometric corrected image from the photo coordinates of the all pixels, inverse-weighted-distance average method was used. And the accuracy of the resulting new image was checked comparing its image coordinates with there corresponding ground coordinates for the check points.

  • PDF

Platform Calibration of an Aerial Multi-View Camera System (항공용 다각사진 카메라 시스템의 플랫폼 캘리브레이션)

  • Lee, Chang-No;Kim, Chang-Jae;Seo, Sang-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.369-375
    • /
    • 2010
  • Since multi-view images can be utilized for 3D visualization and surveying as well, a system calibration is an essential procedure. The cameras in the system are mounted to the holder and their locations and attitudes are relatively fixed. Therefore, the locations and the attitudes of the perspective centers of the four oblique looking cameras can be calculated using the location and attitude of the nadir looking camera and the boresight values between the cameras. In this regard, this research is focusing on the analysis of the relative location and attitude between the nadir and oblique looking cameras based on the results of the exterior orientation parameters after the aerial triangulation of the real multiview images. We acquired high standard deviations of the relative locations between the nadir and oblique cameras. Standard deviations of the relative attitudes between the cameras were low when only the exterior orientations of the oblique looking cameras were allowed to be adjusted. Moreover, low standard deviations of the relative attitudes came when we considered not all the exterior orientations of the cameras but the attitudes of them only.

Semi-automatic Camera Calibration Using Quaternions (쿼터니언을 이용한 반자동 카메라 캘리브레이션)

  • Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • The camera is a key element in image-based three-dimensional positioning, and camera calibration, which properly determines the internal characteristics of such a camera, is a necessary process that must be preceded in order to determine the three-dimensional coordinates of the object. In this study, a new methodology was proposed to determine interior orientation parameters of a camera semi-automatically without being influenced by size and shape of checkerboard for camera calibration. The proposed method consists of exterior orientation parameters estimation using quaternion, recognition of calibration target, and interior orientation parameter determination through bundle block adjustment. After determining the interior orientation parameters using the chessboard calibration target, the three-dimensional position of the small 3D model was determined. In addition, the horizontal and vertical position errors were about ${\pm}0.006m$ and ${\pm}0.007m$, respectively, through the accuracy evaluation using the checkpoints.

Geometric analysis of mobile mapping images sequence

  • Kang, Zhizhong;Zhang, Zuxun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.183-185
    • /
    • 2003
  • Spatially referenced mobile mapping (MM) images contain rich information of man-made objects , e.g. road centerlines, buildings, light poles, traffic signs ,billboards and line trees etc. Therefore, the applications in transportation, urban 3D reconstruction, utility management are implemented increasingly. It’s a fundamental issue lies in MM image process that how to orient this image in the object space including interior orientation of camera and the exterior orientation of image. In this paper, the algorithm of automatic acquirement of DC (Digital Camera) parameters based on MM images is illustrated. And then, the mapping between image space and object space for MM images is described.

  • PDF

Comparative Analysis of Exterior Orientation Parameters of Smartphone Images Using Quaternion-Based SPR and PnP Algorithms (스마트폰 영상정보를 활용한 쿼터니언 기반 후방교회법과 PnP 알고리즘의 외부표정요소 비교 분석)

  • Kim, Namhoon;Lee, Ji-Sang;Bae, Jun-Su;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.465-472
    • /
    • 2019
  • The SPR (Single Photo Resection) is widely used as a method of estimating the EOPs (Exterior Orientation parameters) at the time of taking a photograph, but it requires an initial value and has a disadvantage of being sensitive to the initial value. In this study, we introduce quaternion-based single photo resection and PnP (Perspective-n-Point) algorithm that do not require initial values and compare the results. Photos were taken using a general smartphone, and the ground control point acquisition was based on the hybrid MMS (Mobile Mapping System) point cloud data possessed by the researchers. As a result, when the collinear condition based SPR is true value, quaternion-based SPR has higher attitude angle estimation accuracy than PnP algorithm. In case of camera position estimation, both algorithms showed accuracy within 0.8m when compared with ground control points.

Development of Close Range Photogrammetric Model for Measuring the Size of Objects (피사체의 크기 측정을 위한 근접사진측량모델 개발)

  • Hwang, Jin Sang;Yun, Hong Sic;Kang, Ji Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.129-134
    • /
    • 2009
  • This study is on the development of photogrammetric methode for measuring the size of object without control points. The model is composed of interior orientation parameters, which are consist of specifications of CCD camera and lens distortion parameters, and exterior orientation parameters, which are calculated through relative orientation and scale adjustment. We evaluated the accuracy of the model to find that it is possible to measure the size of object using the model.

The Accuracy of Stereo Digital Camera Photogrammetry (스테레오 디지털 카메라를 이용한 사진측량의 정확도)

  • Kim, Gi-Hong;Youn, Jun-Hee;Park, Ha-Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.663-668
    • /
    • 2010
  • In this study a stereo digital camera system was developed. Using this system, we can collect informations such as coordinates, lengths of all objects shown in the photo image just by taking digital photograph in field. This system has the advantage of obtaining stereo images with settled exterior orientation parameters, while the accuracy slightly worsen because in a close range photogrammetry with stereo digital camera system, the base line distance is restricted within about 1m. We took images with various exposure distances and angles to objects for experimental error assessment, and analyzed the affection of image coordinates errors.