• Title/Summary/Keyword: Camera angles

Search Result 239, Processing Time 0.034 seconds

Distortion Correction of Surface Temperature Measurement Using an Infrared Camera (적외선 카메라를 이용한 표면온도측정의 왜곡 보정)

  • Lee, Sungmin;Kim, Ikhyun;Lee, Jong Kook;Byun, Yunghwan;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.545-551
    • /
    • 2016
  • Surface temperature of supersonic wind tunnel model was measured using an infrared thermography technique. To measure the temperature quantitatively, various calibration techniques such as blackbody calibration which converts detected camera signal to temperature, distortion correction due to the camera lens and an imbalance of camera pose, and emissivity calibration which considers viewing angles to the model surface, were employed. Throughout the study, for the quantitative as well as qualitative surface temperature measurement, it was verified that the distortion correction must be considered even for the use of two-dimensional model in aerodynamics testing.

A Study on the Robot Vision Control Schemes of N-R and EKF Methods for Tracking the Moving Targets (이동 타겟 추적을 위한 N-R과 EKF방법의 로봇비젼제어기법에 관한 연구)

  • Hong, Sung-Mun;Jang, Wan-Shik;Kim, Jae-Meung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.485-497
    • /
    • 2014
  • This paper presents the robot vision control schemes based on the Newton-Raphson (N-R) and the Extended Kalman Filter (EKF) methods for the tracking of moving targets. The vision system model used in this study involves the six camera parameters. The difference is that refers to the uncertainty of the camera's orientation and focal length, and refers to the unknown relative position between the camera and the robot. Both N-R and EKF methods are employed towards the estimation of the six camera parameters. Based on the these six parameters estimated using three cameras, the robot's joint angles are computed with respect to the moving targets, using both N-R and EKF methods. The two robot vision control schemes are tested by tracking the moving target experimentally. Given the experimental results, the two robot control schemes are compared in order to evaluate their strengths and weaknesses.

Verification of Camera-Image-Based Target-Tracking Algorithm for Mobile Surveillance Robot Using Virtual Simulation (가상 시뮬레이션을 이용한 기동형 경계 로봇의 영상 기반 목표추적 알고리즘 검증)

  • Lee, Dong-Youm;Seo, Bong-Cheol;Kim, Sung-Soo;Park, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1463-1471
    • /
    • 2012
  • In this study, a 3-axis camera system design is proposed for application to an existing 2-axis surveillance robot. A camera-image-based target-tracking algorithm for this robot has also been proposed. The algorithm has been validated using a virtual simulation. In the algorithm, the heading direction vector of the camera system in the mobile surveillance robot is obtained by the position error between the center of the view finder and the center of the object in the camera image. By using the heading direction vector of the camera system, the desired pan and tilt angles for target-tracking and the desired roll angle for the stabilization of the camera image are obtained through inverse kinematics. The algorithm has been validated using a virtual simulation model based on MATLAB and ADAMS by checking the corresponding movement of the robot to the target motion and the virtual image error of the view finder.

Development of a Multi-View Camera System Prototype (다각사진촬영시스템 프로토타입 개발)

  • Park, Seon-Dong;Seo, Sang-Il;Yoon, Dong-Jin;Shin, Jin-Soo;Lee, Chang-No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.261-271
    • /
    • 2009
  • Due to the recent rise of a need for 3 dimensional geospatial information on urban areas, general interest in aerial multi-view cameras has been on an increase. The conventional geospatial information system depends solely upon vertical images, while the multi-view camera is capable of taking both vertical and oblique images taken from multiple directions, thus making it easier for the user to interpret the object. Through our research we developed a prototype of a multi-view camera system that includes a camera system, GPS/INS, a flight management system, and a control system. We also studied and experimented with the camera viewing angles, the synchronization of image capture, the exposure delay, the data storage that must be considered for the development of the multi-view camera system.

Experimental Apparatus for Opposition Effect at Seoul National University

  • Bach, Yoonsoo P.;Ishiguro, Masateru;Seo, Jin-Guk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.72.2-72.2
    • /
    • 2018
  • The Opposition Effect (OE) is an enhancement of the brightness of a reflecting light as the phase angle (the Sun-target-observer angle) approaches zero. The mechanisms have been studied both theoretically and experimentally and nowadays recognized that there are two major mechanisms, namely, coherent backscattering OE (CBOE) and shadow hiding OE (SHOE). From data analyses of an S-type asteroid Itokawa taken with the Hayabusa spacecraft onboard camera, it is suggested that the CBOE would be dominant at phase angle smaller than ~ 1.4 deg, while SHOE dominates at larger phase angles (M. Lee & M. Ishiguro, under review). The study on the physical parameters which affect the OE, such as size and composition, will lead us to find a way to disentangle each of them from observation. The experiments in lab, however, faces two major difficulties: (a) the detector blocks the incident light if phase angle is nearly zero and (b) incident and emission angles must be controlled with high angular resolution to prevent blurring of OEs at different phase angles in one measurement. In this presentation, we introduce a new apparatus which has been installed at Seoul National University to investigate the OE in our lab, and summarize the initial results. It will be a valuable starting point to establish infrastructure in Korea, and will shed light on the investigation of OE physics using laboratory simulants.

  • PDF

Experimental Study of Heating Surface Angle Effects on Single Bubble Growth

  • Kim, Jeong-Bae;Kim, Hyung-Dae;Lee, Jang-Ho;Kwon, Young-Chul;Kim, Jeong-Hoon;Kim, Moo-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1980-1992
    • /
    • 2006
  • Nucleate pool boiling experiments were performed using pure R11 for various surface angles under constant heat flux conditions during saturated pool boiling. A 1-mm-diameter circular heater with an artificial cavity in the center that was fabricated using a MEMS technique and a high-speed controller were used to maintain the constant heat flux. Bubble growth images were taken at 5000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of the surface angle on the bubble growth behavior were analyzed for the initial and thermal growth regions using dimensional scales. The parameters that affected the bubble growth behavior were the bubble radius, bubble growth rate, sliding velocity, bubble shape, and advancing and receding contact angles. These phenomena require further analysis for various surface angles and the obtained constant heat flux data provide a good foundation for such future work.

Human Activity Recognition Using Body Joint-Angle Features and Hidden Markov Model

  • Uddin, Md. Zia;Thang, Nguyen Duc;Kim, Jeong-Tai;Kim, Tae-Seong
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.569-579
    • /
    • 2011
  • This paper presents a novel approach for human activity recognition (HAR) using the joint angles from a 3D model of a human body. Unlike conventional approaches in which the joint angles are computed from inverse kinematic analysis of the optical marker positions captured with multiple cameras, our approach utilizes the body joint angles estimated directly from time-series activity images acquired with a single stereo camera by co-registering a 3D body model to the stereo information. The estimated joint-angle features are then mapped into codewords to generate discrete symbols for a hidden Markov model (HMM) of each activity. With these symbols, each activity is trained through the HMM, and later, all the trained HMMs are used for activity recognition. The performance of our joint-angle-based HAR has been compared to that of a conventional binary and depth silhouette-based HAR, producing significantly better results in the recognition rate, especially for the activities that are not discernible with the conventional approaches.

Experimental consideration for contact angle and force acting on bubble under nucleate pool boiling

  • Ji-Hwan Park;Il Seouk Park;Daeseong Jo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1269-1279
    • /
    • 2023
  • Pool boiling experiments are performed within an isolated bubble regime at inclination angles of 0° and 45°. When a bubble grows and departs from the heating surface, the pressure, buoyancy, and surface tension force play important roles. The curvature and base diameter are required to calculate the pressure force, the bubble volume is required to calculate the buoyancy force, and the contact angle and base diameter are required to calculate the surface tension force. The contact angle, base diameter, and volume of the bubbles are evaluated using images captured via a high-speed camera. The surface tension force equation proposed by Fritz is modified with the contact angles obtained in this study. When the bubble grows, the contact angle decreases slowly. However, when the bubble departs, the contact angle rapidly increases owing to necking. At an inclination angle of 0°, the contact angle is calculated as 82.88° at departure. Additionally, the advancing and receding contact angles are calculated as 70.25° and 82.28° at departure, respectively, at an inclination angle of 45°. The dynamic behaviors of bubble growth and departure are discussed with forces by pressure, buoyancy, and surface tension.

Skew Correction of Business Card Images for PDA Application (PDA에서의 명함 영상의 기울기 보정)

  • 박준효;장익훈;김남철
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2128-2131
    • /
    • 2003
  • We present an efficient algorithm for skew correction of business card images obtained by a PDA camera. The proposed method is composed of four parts: block adaptive binarization (BAB), stripe generation, skew angle calculation, and image rotation. In the BAB, an input image is binarized block by block so as to lessen the effects of irregular illumination and shadows over the input image. In the stripe generation, character string clusters are generated merging character strings and their inter-spaces, and then only clusters useful for skew angle calculation are output as stripes. In the skew angle calculation, the direction angles of the stripes are calculated using their central moments and then the skew angle of the input image is determined averaging the direction angles. In the image rotation, the input image is rotated by the skew angle. Experimental results shows that the proposed method yields correction rates of 97% for business card images.

  • PDF

Wetting Behavior and Evaporation Characteristics of Nanofluid Droplets on Glass Surfaces (나노유체 액적의 젖음거동 및 증발 특성)

  • Shin, Dong-Hwan;Lee, Seong-Hyuk
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.9-13
    • /
    • 2012
  • This study investigates experimentally evaporation characteristics of nanofluid droplets containing 50 nm alumina($Al_2O_3$) particles and the wettability changes on a hydrophilic glass surfaces. From the captured digital images by using a CMOS camera and a magnifying lens, we examined the effect of particle concentration on droplet evaporation rate which can be indirectly deduced from the measured droplet volumes varying with time. In particular, with the use of a digital image analysis technique, the present study measured droplet perimeters and the contact angles to study the wetting dynamics during evaporating process. In addition, we compared the measured total evaporation time with theoretically estimated values. It was found that as the volume fractions of nanofluid increased, the total evaporation time and the initial contact angles decreased, while the droplet perimeters increased.