• Title/Summary/Keyword: Camera angles

Search Result 238, Processing Time 0.019 seconds

A Study on the Rotation Angle Estimation of HMD for the Tele-operated Vision System (원격 비전시스템을 위한 HMD의 방향각 측정 알고리즘에 관한 연구)

  • Ro, Young-Shick;Yoon, Seung-Jun;Kang, Hee-Jun;Suh, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.605-613
    • /
    • 2009
  • In this paper, we studied for the real-time azimuthal measurement of HMD (Head Mounted Display) to control the tele-operated vision system on the mobile robot. In the preexistence tele-operated vision system, a joystick was used to control the pan-tilt unit of the remote camera system. To give the sense of presence to the tele-operator, we used a HMD to display the remote scene, measured the rotation angle of the HMD on a real time basis, and transmitted the measured rotation angles to the mobile robot controller to synchronize the pan-tilt angles of remote camera with the HMD. In this paper, we suggest an algorithm for the real-time estimation of the HMD rotation angles using feature points extraction from pc-camera image. The simple experiment is conducted to demonstrate the feasibility.

Study on fear-inducing factors in game - Focused on the compositions and camera angles (게임의 공포 유발 요소에 관한 연구 - 카메라 각도와 구도 중심으로)

  • Zhu, Jia-Li;Seo, Gapyuel
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.221-228
    • /
    • 2018
  • This study mainly focused on horror movies and horror games. Camera angles of horror movies and compositions of horror games are main factors that can cause fear in people's minds. Through analyzing four kinds of factors, including sensual, expectant, restrictive and executive fear elements, in horror games, and combining with the patterns of camera angles and film techniques that Alfred Hitchcock applied in his horror movies, this research investigated certain types of compositions and concluded ones that were more effective on growing fear in players' minds and enhancing their involvement. In conclusion, only the combination of factors in horror-game compositions, like diagonal composition, dual-diagonal composition and inverse triangle-line composition, with visual elements enables player's growing sense of fear and the increase in involvement. Therefore, future works should apply more of these fear-inducing compositions.

Development of a rotation angle estimation algorithm of HMD using feature points extraction (특징점 추출을 통한 HMD 회전각측정 알고리즘 개발)

  • Ro, Young-Shick;Kim, Chul-Hee;Yun, Won-Jun;Yoon, Yoo-Kyoung
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.360-362
    • /
    • 2009
  • In this paper, we studied for the real-time azimuthal measurement of HMD(Head Mounted Display) using the feature points detection to control the tele-operated vision system on the mobile robot. To give the sense of presence to the tele-operator, we used a HMD to display the remote scene, measured the rotation angle of the HMD on a real time basis, and transmitted the measured rotation angles to the mobile robot controller to synchronize the pan-tilt angles of remote camera with the HMD. In this paper, we suggest an algorithm for the real-time estimation of the HMD rotation angles using feature points extraction from pc-camera image.

  • PDF

A Calibration Algorithm Using Known Angle (각도 정보를 이용한 카메라 보정 알고리듬)

  • 권인소;하종은
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.415-420
    • /
    • 2004
  • We present a new algorithm for the calibration of a camera and the recovery of 3D scene structure up to a scale from image sequences using known angles between lines in the scene. Traditional method for calibration using scene constraints requires various scene constraints due to the stratified approach. Proposed method requires only one type of scene constraint of known angle and also it directly recovers metric structure up to an unknown scale from projective structure. Specifically, we recover the matrix that is the homography between the projective structure and the Euclidean structure using angles. Since this matrix is a unique one in the given set of image sequences, we can easily deal with the problem of varying intrinsic parameters of the camera. Experimental results on the synthetic and real images demonstrate the feasibility of the proposed algorithm.

A Study on the Accuracy of Convergent Photographs Using Non-Metric Camera (비측량용 사진기에 의한 수렴사진의 정확도에 관한 연구)

  • Yeu, Bock-Mo;Kwon, Hyon;Yu, Ki-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.7 no.2
    • /
    • pp.63-68
    • /
    • 1989
  • This study was to develope the methmatic prediction model of accuracy for the convergent photographs using nonmetric camera in close range photogrammetry. By analyzing positioning error on object distance and convergent angles, the validity of the new formulae for prediction of accuracy were proved. Rational design of camera systems and convergent angles according to accuracy demands in plane and height were developed using these formulae.

  • PDF

Camera Rotation Calculation Based on Inner Product (벡터내적 기반 카메라 자세 추정)

  • Chon, Jae-Choon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.641-644
    • /
    • 2008
  • In order to improve a camera rotation calculation based on the bundle adjustment in Chon's camera motion (Chon and Shankar, 2007, 2008), this paper introduces a method calculating the camera rotation. It estimates a unit vector in the optical axis of a camera through the angles between the optical axis and vectors passing a camera position and ground control points (GCP). The camera position is estimated by using the inner product method proposed by Chon. The horizontal and vertical unit vectors of the camera are determined by using Yakimovsky and Cunningham's camera model (CAHV) (1978).

Neural Network Based Camera Calibration and 2-D Range Finding (신경회로망을 이용한 카메라 교정과 2차원 거리 측정에 관한 연구)

  • 정우태;고국원;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.510-514
    • /
    • 1994
  • This paper deals with an application of neural network to camera calibration with wide angle lens and 2-D range finding. Wide angle lens has an advantage of having wide view angles for mobile environment recognition ans robot eye in hand system. But, it has severe radial distortion. Multilayer neural network is used for the calibration of the camera considering lens distortion, and is trained it by error back-propagation method. MLP can map between camera image plane and plane the made by structured light. In experiments, Calibration of camers was executed with calibration chart which was printed by using laser printer with 300 d.p.i. resolution. High distortion lens, COSMICAR 4.2mm, was used to see whether the neural network could effectively calibrate camera distortion. 2-D range of several objects well be measured with laser range finding system composed of camera, frame grabber and laser structured light. The performance of 3-D range finding system was evaluated through experiments and analysis of the results.

  • PDF

THE SIMPLE METHOD OF GEOMETRIC RECONSTRUCTION FOR SPOT IMAGES

  • JUNG HYUNG-SUP;KIM SANG-WAN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.205-207
    • /
    • 2004
  • The simple method of the geometric reconstruction of satellite linear pushbroom images is investigated. The model of the sensor used is based on the SPOT model that is developed by Kraiky. The satellite trajectory is a Keplerian trajectory in the approximation. Four orbital parameters, longitude of the ascending $node(\omega),$ inclination of the orbit plan(I), latitude argument of the satellite(W) and distance between earth center and satellite, are used for the camera modeling. We suppose that four orbital parameters and satellite attitude angles are exactly acquired. Then, in order to refine model, the given attitude angles and orbital parameters is not changed, but time-independent four parameters associated with LOS(Line Of Sight) vector is updated. A pair of SPOT-5 images has been used for validation of proposed method. Two GCPs acquired by GPS survey is used to controlling the LOS vector. The results are that the RMSE of 16 checking points are about 4.5m. Because the ground resolution of SPOT-5 is 2.5m, the result obtained in this study has a good accuracy. It demonstrates that the sensor model developed by this study can be used to reconstruct the geometry of satellite image taken by pushbroom camera.

  • PDF

Omnidirectional Camera-based Image Rendering Synchronization System Using Head Mounted Display (헤드마운티드 디스플레이를 활용한 전방위 카메라 기반 영상 렌더링 동기화 시스템)

  • Lee, Seungjoon;Kang, Suk-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.6
    • /
    • pp.782-788
    • /
    • 2018
  • This paper proposes a novel method for the omnidirectional camera-based image rendering synchronization system using head mounted display. There are two main processes in the proposed system. The first one is rendering 360-degree images which are remotely photographed to head mounted display. This method is based on transmission control protocol/internet protocol(TCP/IP), and the sequential images are rapidly captured and transmitted to the server using TCP/IP protocol with the byte array data format. Then, the server collects the byte array data, and make them into images. Finally, the observer can see them while wearing head mounted display. The second process is displaying the specific region by detecting the user's head rotation. After extracting the user's head Euler angles from head mounted display's inertial measurement units sensor, the proposed system display the region based on these angles. In the experimental results, rendering the original image at the same resolution in a given network environment causes loss of frame rate, and rendering at the same frame rate results in loss of resolution. Therefore, it is necessary to select optimal parameters considering environmental requirements.

On low cost model-based monitoring of industrial robotic arms using standard machine vision

  • Karagiannidisa, Aris;Vosniakos, George C.
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.81-99
    • /
    • 2014
  • This paper contributes towards the development of a computer vision system for telemonitoring of industrial articulated robotic arms. The system aims to provide precision real time measurements of the joint angles by employing low cost cameras and visual markers on the body of the robot. To achieve this, a mathematical model that connects image features and joint angles was developed covering rotation of a single joint whose axis is parallel to the visual projection plane. The feature that is examined during image processing is the varying area of given circular target placed on the body of the robot, as registered by the camera during rotation of the arm. In order to distinguish between rotation directions four targets were used placed every $90^{\circ}$ and observed by two cameras at suitable angular distances. The results were deemed acceptable considering camera cost and lighting conditions of the workspace. A computational error analysis explored how deviations from the ideal camera positions affect the measurements and led to appropriate correction. The method is deemed to be extensible to multiple joint motion of a known kinematic chain.