• Title/Summary/Keyword: Camera Model

Search Result 1,509, Processing Time 0.031 seconds

A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure

  • Ni, Yi-Qing;Wang, You-Wu;Liao, Wei-Yang;Chen, Wei-Huan
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.769-781
    • /
    • 2019
  • Dynamic displacement response of civil structures is an important index for in-construction and in-service structural condition assessment. However, accurately measuring the displacement of large-scale civil structures such as high-rise buildings still remains as a challenging task. In order to cope with this problem, a vision-based system with the use of industrial digital camera and image processing has been developed for long-distance, remote, and real-time monitoring of dynamic displacement of supertall structures. Instead of acquiring image signals, the proposed system traces only the coordinates of the target points, therefore enabling real-time monitoring and display of displacement responses in a relatively high sampling rate. This study addresses the in-situ experimental verification of the developed vision-based system on the Canton Tower of 600 m high. To facilitate the verification, a GPS system is used to calibrate/verify the structural displacement responses measured by the vision-based system. Meanwhile, an accelerometer deployed in the vicinity of the target point also provides frequency-domain information for comparison. Special attention has been given on understanding the influence of the surrounding light on the monitoring results. For this purpose, the experimental tests are conducted in daytime and nighttime through placing the vision-based system outside the tower (in a brilliant environment) and inside the tower (in a dark environment), respectively. The results indicate that the displacement response time histories monitored by the vision-based system not only match well with those acquired by the GPS receiver, but also have higher fidelity and are less noise-corrupted. In addition, the low-order modal frequencies of the building identified with use of the data obtained from the vision-based system are all in good agreement with those obtained from the accelerometer, the GPS receiver and an elaborate finite element model. Especially, the vision-based system placed at the bottom of the enclosed elevator shaft offers better monitoring data compared with the system placed outside the tower. Based on a wavelet filtering technique, the displacement response time histories obtained by the vision-based system are easily decomposed into two parts: a quasi-static ingredient primarily resulting from temperature variation and a dynamic component mainly caused by fluctuating wind load.

Design and Implementation of BNN based Human Identification and Motion Classification System Using CW Radar (연속파 레이다를 활용한 이진 신경망 기반 사람 식별 및 동작 분류 시스템 설계 및 구현)

  • Kim, Kyeong-min;Kim, Seong-jin;NamKoong, Ho-jung;Jung, Yun-ho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.211-218
    • /
    • 2022
  • Continuous wave (CW) radar has the advantage of reliability and accuracy compared to other sensors such as camera and lidar. In addition, binarized neural network (BNN) has a characteristic that dramatically reduces memory usage and complexity compared to other deep learning networks. Therefore, this paper proposes binarized neural network based human identification and motion classification system using CW radar. After receiving a signal from CW radar, a spectrogram is generated through a short-time Fourier transform (STFT). Based on this spectrogram, we propose an algorithm that detects whether a person approaches a radar. Also, we designed an optimized BNN model that can support the accuracy of 90.0% for human identification and 98.3% for motion classification. In order to accelerate BNN operation, we designed BNN hardware accelerator on field programmable gate array (FPGA). The accelerator was implemented with 1,030 logics, 836 registers, and 334.904 Kbit block memory, and it was confirmed that the real-time operation was possible with a total calculation time of 6 ms from inference to transferring result.

A Deep Learning-based Real-time Deblurring Algorithm on HD Resolution (HD 해상도에서 실시간 구동이 가능한 딥러닝 기반 블러 제거 알고리즘)

  • Shim, Kyujin;Ko, Kangwook;Yoon, Sungjoon;Ha, Namkoo;Lee, Minseok;Jang, Hyunsung;Kwon, Kuyong;Kim, Eunjoon;Kim, Changick
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.3-12
    • /
    • 2022
  • Image deblurring aims to remove image blur, which can be generated while shooting the pictures by the movement of objects, camera shake, blurring of focus, and so forth. With the rise in popularity of smartphones, it is common to carry portable digital cameras daily, so image deblurring techniques have become more significant recently. Originally, image deblurring techniques have been studied using traditional optimization techniques. Then with the recent attention on deep learning, deblurring methods based on convolutional neural networks have been actively proposed. However, most of them have been developed while focusing on better performance. Therefore, it is not easy to use in real situations due to the speed of their algorithms. To tackle this problem, we propose a novel deep learning-based deblurring algorithm that can be operated in real-time on HD resolution. In addition, we improved the training and inference process and could increase the performance of our model without any significant effect on the speed and the speed without any significant effect on the performance. As a result, our algorithm achieves real-time performance by processing 33.74 frames per second at 1280×720 resolution. Furthermore, it shows excellent performance compared to its speed with a PSNR of 29.78 and SSIM of 0.9287 with the GoPro dataset.

A Study on the Application of Task Offloading for Real-Time Object Detection in Resource-Constrained Devices (자원 제약적 기기에서 자율주행의 실시간 객체탐지를 위한 태스크 오프로딩 적용에 관한 연구)

  • Jang Shin Won;Yong-Geun Hong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.12
    • /
    • pp.363-370
    • /
    • 2023
  • Object detection technology that accurately recognizes the road and surrounding conditions is a key technology in the field of autonomous driving. In the field of autonomous driving, object detection technology requires real-time performance as well as accuracy of inference services. Task offloading technology should be utilized to apply object detection technology for accuracy and real-time on resource-constrained devices rather than high-performance machines. In this paper, experiments such as performance comparison of task offloading, performance comparison according to input image resolution, and performance comparison according to camera object resolution were conducted and the results were analyzed in relation to the application of task offloading for real-time object detection of autonomous driving in resource-constrained devices. In this experiment, the low-resolution image could derive performance improvement through the application of the task offloading structure, which met the real-time requirements of autonomous driving. The high-resolution image did not meet the real-time requirements for autonomous driving due to the increase in communication time, although there was an improvement in performance. Through these experiments, it was confirmed that object recognition in autonomous driving affects various conditions such as input images and communication environments along with the object recognition model used.

Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct (수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향)

  • Ou-Sup Han;Yi-Rac Choi;HyeongHk Kim;JinHo Lim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • Fuel gases such as methane and propane are used in explosion hazardous area of domestic plants and can form non-uniform mixtures with the influence of process conditions due to leakage. The fire-explosion risk assessment using literature data measured under uniform mixtures, damage prediction can be obtained the different results from actual explosion accidents by gas leaks. An explosion characteristics such as explosion pressure and flame velocity of non-uniform gas mixtures with concentration change similar to that of facility leak were examined. The experiments were conducted in a closed 0.82 m long stainless steel duct with observation recorded by color high speed camera and piezo pressure sensor. Also we proposed the quantification method of non-uniform mixtures from a regression analysis model on the change of concentration difference with time in explosion duct. For the non-uniform condition of this study, the area of flame surface enlarged with increasing the concentration non-uniform in the flame propagation of methane and was similar to the wrinkled flame structure existing in a turbulent flame. The time to peak pressure of methane decreased as the non-uniform increased and the explosion pressure increased with increasing the non-uniform. The ranges of KG (Deflagration index) of methane with the concentration non-uniform were 1.30 to 1.58 [MPa·m/s] and the increase rate of KG was 17.7% in methane with changing from uniform to non-uniform.

A Fusion Sensor System for Efficient Road Surface Monitorinq on UGV (UGV에서 효율적인 노면 모니터링을 위한 퓨전 센서 시스템 )

  • Seonghwan Ryu;Seoyeon Kim;Jiwoo Shin;Taesik Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.18-26
    • /
    • 2024
  • Road surface monitoring is essential for maintaining road environment safety through managing risk factors like rutting and crack detection. Using autonomous driving-based UGVs with high-performance 2D laser sensors enables more precise measurements. However, the increased energy consumption of these sensors is limited by constrained battery capacity. In this paper, we propose a fusion sensor system for efficient surface monitoring with UGVs. The proposed system combines color information from cameras and depth information from line laser sensors to accurately detect surface displacement. Furthermore, a dynamic sampling algorithm is applied to control the scanning frequency of line laser sensors based on the detection status of monitoring targets using camera sensors, reducing unnecessary energy consumption. A power consumption model of the fusion sensor system analyzes its energy efficiency considering various crack distributions and sensor characteristics in different mission environments. Performance analysis demonstrates that setting the power consumption of the line laser sensor to twice that of the saving state when in the active state increases power consumption efficiency by 13.3% compared to fixed sampling under the condition of λ=10, µ=10.

Episode Analysis of the Habit and Phase Changes of Snow Crystals in the Wintertime Yeongdong Region (겨울철 영동지역 눈 결정 습성과 성상 변화 에피소드 분석)

  • Young-Gil Choi;Byung-Gon Kim;Ji-Yun Kim;Tae-Yeon Kim;Jin-Heon Han;GyuWon Lee;Kwonil Kim;Ki-Hoon Kim;Byung-Hwan Lim
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.139-151
    • /
    • 2024
  • The Yeongdong region has suffered from severe snowstorms and the relevant damage such as traffic accidents on slippery roads, and the collapse of greenhouses and temporary buildings. While a lot of research on snowfall has been conducted, the detailed study of snow crystals' phase and habit through intensive observations and the relevant microphysical analysis is still lacking. Therefore, a snowflake camera, PARSIVEL, and intensive radiosonde soundings were utilized to investigate phase and habit changes in solid precipitation. Two remarkable episodes of phase and habit changes were selected such as 19 March 2022 and 15 February 2023. Both events occurred in the synoptic condition of the High in the north and the Low passing by the south, which was accompanied by rapid temperature cooling below 2.5 km. During the events of a short period between 3 to 6 hours, the temperature at 850 hPa decreased by about 4 to 6℃. This cooling led to a change in the main habit of snow particles from riming to aggregate, identified with both MASC and PARSIVEL. Meanwhile, the LDAPS model analyses do not successively represent the rapid cooling and short-term variations of solid precipitation, probably by virtue of overestimating low-level equivalent potential temperature during these periods. The underlying causes of these the low-level temperature variations within 6 hours, still remain unclear. It might be associated with mesoscale orographic phenomenon due to the mountains and East Sea effects, which certainly needs an intensive and comprehensive observation campaign.

Sorghum Panicle Detection using YOLOv5 based on RGB Image Acquired by UAV System (무인기로 취득한 RGB 영상과 YOLOv5를 이용한 수수 이삭 탐지)

  • Min-Jun, Park;Chan-Seok, Ryu;Ye-Seong, Kang;Hye-Young, Song;Hyun-Chan, Baek;Ki-Su, Park;Eun-Ri, Kim;Jin-Ki, Park;Si-Hyeong, Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.295-304
    • /
    • 2022
  • The purpose of this study is to detect the sorghum panicle using YOLOv5 based on RGB images acquired by a unmanned aerial vehicle (UAV) system. The high-resolution images acquired using the RGB camera mounted in the UAV on September 2, 2022 were split into 512×512 size for YOLOv5 analysis. Sorghum panicles were labeled as bounding boxes in the split image. 2,000images of 512×512 size were divided at a ratio of 6:2:2 and used to train, validate, and test the YOLOv5 model, respectively. When learning with YOLOv5s, which has the fewest parameters among YOLOv5 models, sorghum panicles were detected with mAP@50=0.845. In YOLOv5m with more parameters, sorghum panicles could be detected with mAP@50=0.844. Although the performance of the two models is similar, YOLOv5s ( 4 hours 35 minutes) has a faster training time than YOLOv5m (5 hours 15 minutes). Therefore, in terms of time cost, developing the YOLOv5s model was considered more efficient for detecting sorghum panicles. As an important step in predicting sorghum yield, a technique for detecting sorghum panicles using high-resolution RGB images and the YOLOv5 model was presented.

A Study of the Reactive Movement Synchronization for Analysis of Group Flow (그룹 몰입도 판단을 위한 움직임 동기화 연구)

  • Ryu, Joon Mo;Park, Seung-Bo;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.79-94
    • /
    • 2013
  • Recently, the high value added business is steadily growing in the culture and art area. To generated high value from a performance, the satisfaction of audience is necessary. The flow in a critical factor for satisfaction, and it should be induced from audience and measures. To evaluate interest and emotion of audience on contents, producers or investors need a kind of index for the measurement of the flow. But it is neither easy to define the flow quantitatively, nor to collect audience's reaction immediately. The previous studies of the group flow were evaluated by the sum of the average value of each person's reaction. The flow or "good feeling" from each audience was extracted from his face, especially, the change of his (or her) expression and body movement. But it was not easy to handle the large amount of real-time data from each sensor signals. And also it was difficult to set experimental devices, in terms of economic and environmental problems. Because, all participants should have their own personal sensor to check their physical signal. Also each camera should be located in front of their head to catch their looks. Therefore we need more simple system to analyze group flow. This study provides the method for measurement of audiences flow with group synchronization at same time and place. To measure the synchronization, we made real-time processing system using the Differential Image and Group Emotion Analysis (GEA) system. Differential Image was obtained from camera and by the previous frame was subtracted from present frame. So the movement variation on audience's reaction was obtained. And then we developed a program, GEX(Group Emotion Analysis), for flow judgment model. After the measurement of the audience's reaction, the synchronization is divided as Dynamic State Synchronization and Static State Synchronization. The Dynamic State Synchronization accompanies audience's active reaction, while the Static State Synchronization means to movement of audience. The Dynamic State Synchronization can be caused by the audience's surprise action such as scary, creepy or reversal scene. And the Static State Synchronization was triggered by impressed or sad scene. Therefore we showed them several short movies containing various scenes mentioned previously. And these kind of scenes made them sad, clap, and creepy, etc. To check the movement of audience, we defined the critical point, ${\alpha}$and ${\beta}$. Dynamic State Synchronization was meaningful when the movement value was over critical point ${\beta}$, while Static State Synchronization was effective under critical point ${\alpha}$. ${\beta}$ is made by audience' clapping movement of 10 teams in stead of using average number of movement. After checking the reactive movement of audience, the percentage(%) ratio was calculated from the division of "people having reaction" by "total people". Total 37 teams were made in "2012 Seoul DMC Culture Open" and they involved the experiments. First, they followed induction to clap by staff. Second, basic scene for neutralize emotion of audience. Third, flow scene was displayed to audience. Forth, the reversal scene was introduced. And then 24 teams of them were provided with amuse and creepy scenes. And the other 10 teams were exposed with the sad scene. There were clapping and laughing action of audience on the amuse scene with shaking their head or hid with closing eyes. And also the sad or touching scene made them silent. If the results were over about 80%, the group could be judged as the synchronization and the flow were achieved. As a result, the audience showed similar reactions about similar stimulation at same time and place. Once we get an additional normalization and experiment, we can obtain find the flow factor through the synchronization on a much bigger group and this should be useful for planning contents.

Enhancing the performance of the facial keypoint detection model by improving the quality of low-resolution facial images (저화질 안면 이미지의 화질 개선를 통한 안면 특징점 검출 모델의 성능 향상)

  • KyoungOok Lee;Yejin Lee;Jonghyuk Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.171-187
    • /
    • 2023
  • When a person's face is recognized through a recording device such as a low-pixel surveillance camera, it is difficult to capture the face due to low image quality. In situations where it is difficult to recognize a person's face, problems such as not being able to identify a criminal suspect or a missing person may occur. Existing studies on face recognition used refined datasets, so the performance could not be measured in various environments. Therefore, to solve the problem of poor face recognition performance in low-quality images, this paper proposes a method to generate high-quality images by performing image quality improvement on low-quality facial images considering various environments, and then improve the performance of facial feature point detection. To confirm the practical applicability of the proposed architecture, an experiment was conducted by selecting a data set in which people appear relatively small in the entire image. In addition, by choosing a facial image dataset considering the mask-wearing situation, the possibility of expanding to real problems was explored. As a result of measuring the performance of the feature point detection model by improving the image quality of the face image, it was confirmed that the face detection after improvement was enhanced by an average of 3.47 times in the case of images without a mask and 9.92 times in the case of wearing a mask. It was confirmed that the RMSE for facial feature points decreased by an average of 8.49 times when wearing a mask and by an average of 2.02 times when not wearing a mask. Therefore, it was possible to verify the applicability of the proposed method by increasing the recognition rate for facial images captured in low quality through image quality improvement.