• Title/Summary/Keyword: Cam pinion

Search Result 13, Processing Time 0.019 seconds

CRP 시스템의 피팅수명 (Pitting Life of CRP System)

  • 김창현;남형철;권순만
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.283-289
    • /
    • 2012
  • Cam rack pinion (CRP) system which consists of cam rack and roller pinion transforms the rotation motion into linear one. The roller pinion has the plurality of rollers and meshes with its conjugated cam rack. The exact tooth profile of the cam rack and the non-undercut condition to satisfy the required performance have been proposed by introducing the profile shift coefficient. The load stress factors are investigated by varying the shape design parameters to predict the gear surface fatigue limit which is strongly related to the gear noise and vibration at the contact patch. The results show that the pitting life can be extended significantly by increasing the profile shift coefficient.

롤러 기어 메커니즘을 이용한 직선이송시스템 (Linear Drive Systems using Roller Gear Mechanism)

  • 김창현;남형철;권순만
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.702-707
    • /
    • 2012
  • This paper considers two linear drive systems using roller gear mechanism(RGM), one is the RRP(roller rack pinion) system that consists of a roller rack and a cam pinion, the other is the CRP(cam rack pinion) system that consists of a cam rack and a roller pinion. Through the comparison of contact forces and load-stress factors between two linear drive systems, it reveals that the RRP system is superior to the CRP system in the aspect of the bending strength, while the CRP system has higher contact fatigue resistance than that of the RRP system.

RRP 시스템의 피팅수명 (Pitting Life for RRP System)

  • 김창현;남형철;권순만
    • 대한기계학회논문집A
    • /
    • 제36권4호
    • /
    • pp.387-393
    • /
    • 2012
  • 본 논문에서는 기존 랙-피니언 시스템의 랙 치형을 핀 또는 롤러로 대체한 롤러 랙 피니언 (RRP) 시스템의 표면피로 향상방안을 고찰하였다. 우선 전위계수(profile shift coefficient)를 고려하여 RRP 시스템의 캠 피니언(cam pinion)에 대한 엄밀 치형설계 방법 및 언더컷 방지 조건을 소개하였고, 이를 바탕으로 설계인자의 변화에 따른 하중 및 하중응력계수(load stress factor)의 변화를 검토하였다. 이를 통해 RRP 시스템의 표면 내구성을 향상시킬 수 있는 방안으로 전위계수의 증가가 효과적임을 알 수 있었다.

i-PGS 기반 선회베어링의 접촉피로강도 설계 (Contact Fatigue Strength Design of a Slewing Bearing Based on i-PGS)

  • 권순만;신흥철
    • 한국생산제조학회지
    • /
    • 제25권1호
    • /
    • pp.21-29
    • /
    • 2016
  • To overcome the large ring gear manufacturing problems seen in slewing bearings and girth gears, pin gear drive units have been developed. Among them, a novel slewing bearing with an internal pinwheel gear set (i-PGS) is introduced in this paper. First, we consider the exact cam pinion profile of i-PGS with the introduction of a profile shift coefficient. Furthermore, a new root relief profile modification for the i-PGS cam pinion is presented. Then, the contact stresses are investigated to determine the characteristics of the surface fatigue by varying the shape design parameters. The results show that the contact stresses of i-PGS can be reduced significantly by increasing the profile shift coefficient. In addition, the contact ratio, a measure of teeth overlapping action, decreases with the decrease of the allowable pressure angle.

BRG 시스템의 접촉 피로수명 (Contact Fatigue Life for RRG System)

  • 남형철;김창현;권순만
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.95-101
    • /
    • 2012
  • An internal type roller ring gear(RRG) system composed of either a pin or a roller ring gear and its conjugated cam pinion can improve the gear endurance from that of a conventional gear system by reducing the sliding contact, while increasing the rolling motion. In this paper, we first proposed the exact cam gear profile and the self-intersection conditions obtained when the profile shift coefficient is introduced. Then, we investigated contact stresses and surface pitting life to fmd characteristics for surface fatigue by varying the shape design parameters. The results show that the pitting life can be extended significantly by increasing the profile shift coefficient.

핀 휠을 구비한 외륜형 선회베어링의 면압강도 (Contact Stress of Slewing Ring Bearing with External Pinwheel Gear Set)

  • 권순만
    • 한국생산제조학회지
    • /
    • 제24권2호
    • /
    • pp.231-237
    • /
    • 2015
  • The pin-gear drive is a special form of fixed-axle gear mechanism. A large wheel with cylindrical pin teeth is called a pinwheel. As pinwheels are rounded, they have a simple structure, easy processing, low cost, and easy overhaul compared with general gears. They are also suitable for low-speed, heavy-duty mechanical transmission and for occasions with more dust, poor lubrication, etc. This paper introduces a novel slewing ring bearing with an external pinwheel gear set (e-PGS). First, we consider the exact cam pinion profile of the e-PGS with the introduction of a profile shift. Then, the contact stresses are investigated to determine the characteristics of the surface fatigue by varying the shape design parameters. The results show that the contact stresses of the e-PGS can be lowered significantly by increasing the profile shift coefficient.

RGM 기반 롤러 트랙 기어 시스템 설계 (Roller Track Gear System Design based on Roller Gear Mechanism)

  • 권순만
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.194-198
    • /
    • 2014
  • In recent years, RGM(roller gear mechanism) systems, wherein one of the gears of a meshing gear pair is replaced with pins or rollers, have been reintroduced, which is a consequence of, and therefore a reflection of, the rapid advances made in manufacturing technology. Three RTG(roller track gear) systems for arbitrary path transportation (e.g., L-, O-, U-, and S-shaped tracks) were constructed using two out of three RGM systems, namely, the CRP(cam rack pinion), CRG(cam ring gear), and RPG(roller pinion gear) systems, and are introduced in this paper. We also present three ways to prevent the intersection and non-contact phenomena at the teeth in the vicinity of the conversion point between two joined RGM systems.

RPG 시스템의 접촉 피로수명 (Contact Surface Fatigue Life for RPG System)

  • 남형철;권순만;신중호
    • 대한기계학회논문집A
    • /
    • 제35권11호
    • /
    • pp.1453-1459
    • /
    • 2011
  • 외접기어의 어느 한쪽 기어를 핀 또는 롤러로 대체한 롤러 피니언 기어 (RPG) 시스템은 기어 치물림 시 미끄럼 접촉을 줄이고 구름운동을 증대시켜 기어 내구성을 향상시킬 수 있다. 우선 본 논문에서는 전위계수(profile shift coefficient)를 고려하여 RPG 시스템의 캠 기어(cam gear)의 엄밀 치형설계 방법 및 치 꼬임으로 인한 간섭 방지조건을 제시하였다. 또 기어구동에 있어 치면에서 발생되는 진동이나 소음의 원인이 되는 피팅(pitting) 발생수명을 고려하기 위해, 설계인자의 변화에 따른 Hertz 접촉응력 및 하중응력계수(load stress factor)의 변화를 검토하였다. 이를 통해 RPG 시스템의 내구성을 향상시킬 수 있는 방안으로 전위계수의 증가를 제안하였다.

핀 휠 기반 거스 기어의 접촉 피로수명 평가 (Estimation of Contact Fatigue Life of a Girth Gear Based on Pinwheel)

  • 권순만;신흥철
    • 한국생산제조학회지
    • /
    • 제25권4호
    • /
    • pp.245-252
    • /
    • 2016
  • Girth gears are applied in the mining, cement, and mineral processing industries and used in various types of horizontal mills, rotary dryers and kilns, and other heavy-gear ring applications. The large ring gears are normally fitted outside mills or kilns to provide the primary rotational drive. Recently, an external pinwheel gear set (e-PGS) was introduced to overcome manufacturing problems associated with girth gears. e-PGS is also suitable for low-speed, heavy-duty mechanical transmission and dusty and poor-lubrication conditions. This paper first presents a new profile modification of root relief for the e-PGS cam pinion. We then investigate load-stress factors to estimate the surface fatigue life by varying the shape design parameters. The results show that the contact fatigue life of an e-PGS can be extended significantly by increasing the profile shift coefficient. However, support bearing life of the pinwheel depends more on the contact force distribution than the profile shift coefficient.