• Title/Summary/Keyword: Calpain System

Search Result 20, Processing Time 0.025 seconds

The role of calpain in skeletal muscle

  • Pandurangan, Muthuraman;Hwang, Inho
    • Animal cells and systems
    • /
    • v.16 no.6
    • /
    • pp.431-437
    • /
    • 2012
  • Calpains are a class of proteins that belong to the calcium-dependent, non-lysosomal cysteine proteases. There are three major types of calpains expressed in the skeletal muscle, namely, ${\mu}$-calpain, m-calpain, and calpain 3, which show proteolytic activities. Skeletal muscle fibers possess all three calpains, and they are $Ca^{2+}$-dependent proteases. The functional role of calpains was found to be associated with apoptosis and myogenesis. However, calpain 3 is likely to be involved in sarcomeric remodeling. A defect in the expression of calpain 3 leads to limb-girdle muscular dystrophy type 2A. Calpain 3 is found in skeletal muscle fibers at the N2A line of the large elastic protein, titin. A substantial proportion of calpain 3 is activated 24 h following a single bout of eccentric exercise. In vitro studies indicated that calpain 3 can be activated 2-4 fold higher than normal resting cytoplasmic [$Ca^{2+}$]. Characterization of the calpain system in the developing muscle is essential to explain which calpain isoforms are present and whether both ${\mu}$-calpain and m-calpain exist in differentiating myoblasts. Information from such studies is needed to clarify the role of the calpain system in skeletal muscle growth. It has been demonstrated that the activation of ubiquitous calpains and calpain 3 in skeletal muscle is very well regulated in the presence of huge and rapid changes in intracellular [$Ca^{2+}$].

Feeding strategies and ageing time alter calpain system proteins activities and meat quality of Braford steers

  • Coria, Maria Sumampa;Pighin, Dario;Grigioni, Gabriela;Palma, Gustavo Adolfo
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.272-280
    • /
    • 2022
  • Objective: The aim of this study was to evaluate the effect of ageing and feeding strategies on the calpain protease system and meat quality traits in Braford steers. Methods: Thirty Braford steers were employed; 15 animals were supplemented with corn silage during finishing and 15 were kept only on pasture. Meat quality traits and calpain system protein activity were evaluated in longissimus thoracis et lumborum (LTL) steaks aged for 2, 7, 14, and 21 days. Results: Aged meat showed higher pH and calcium content, while Warner Bratzler shear force (WBSF) decreased to day 21. No interaction between ageing and diet was seen for quality traits. Steers finished with corn silage showed higher values of water holding capacity, WBSF and free calcium, and lower values of pH and cooking loss. Calpain and calpastatin activities decreased with ageing. Finishing steers on pasture produced higher values of calpains and lower values of calpastatin activities. The higher values of calpain 1 activity were observed in muscles aged 2 days from pasture finished animals, and the lower activity of the inhibitor in the 21 days aged samples of the same group. Conclusion: These results suggest a diet by ageing interaction in calpains and calpastatin and this interaction impact in Warner Bratzler Shear Force in Braford LTL muscle.

Comparative Studies on Metabolic Rate and Calpain/Calpastatin Activity between Hanwoo and Holstein Beef

  • Rhee, M.S.;Ryu, Y.C.;Kim, B.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1747-1753
    • /
    • 2002
  • The objectives of this study were to examine the effect of early short-term temperature conditioning on metabolic rate and calpain/calpastatin system and to compare variations in metabolic rate and calpain/calpastatin system between Hanwoo and Holstein beef. Longissimus thoracis et lumborum of the right carcass from 3 Hanwoo and 3 Holstein bulls were removed within 30 min of exsanguinations, cut into three pieces, and then temperature conditioned until 3 h postmortem (PM) at 2, 16, and $30^{\circ}C$, respectively. Rigor values (R-values; $R_248$, $R_250$, and $R_258$), pH, muscle temperature, glycogen content, $\mu$- and m-calpain activities, and calpastatin acitivity were measured at 1, 3, 9, and 24 h PM, respectively. Hanwoo beef had higher muscle temperature, faster metabolic rate at early PM stage in R-values, and lower $\mu$-calpain activity than Holstein beef (p<0.05). The $30^{\circ}C$ treatment maintained muscle temperature of $30^{\circ}C$ until 3 h PM and resulted in faster pH decline at 3 and 9 h PM (p<0.05) than other treatments. The $16^{\circ}C$ had higher (p<0.05) muscle temperature at 3 h PM than the $2^{\circ}C$, but no difference in all other traits was observed between the $2^{\circ}C$ and the $16^{\circ}C$. Early shortterm temperature treatment used in this study was not sufficient to effectively activate calpain/calpastatin system. Correlations among all traits except m-calpain and muscle temperature were generally high (r>0.60; p<0.001). Among R-values, $R_258$ had higher correlations with other metabolic traits than those of $R_248$ and $R_250$. These data suggest that early PM metabolic rate, $\mu$-calpain activity, and calpastatin activity may be closely related to each other. Variations in metabolic rate and $\mu$-calpain activity at early PM stage between Hanwoo and Holstein beef may imply variations in meat quality between both breeds.

Feeding strategies alter gene expression of the calpain system and meat quality in the longissimus muscle of Braford steers

  • Coria, Maria Sumampa;Reineri, Pablo Sebastian;Pighin, Dario;Barrionuevo, Maria Guadalupe;Carranza, Pedro Gabriel;Grigioni, Gabriela;Palma, Gustavo Adolfo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.753-762
    • /
    • 2020
  • Objective: The aim of the present study was to determine the effect of supplementing pasture-finished steers with corn silage on the expression level of the calpain system proteins and beef tenderization. Methods: Thirty Braford steers grazing on summer pasture were used for the study. For 120 days fifteen animals were supplemented with corn silage at 1% of body weight per head per day (Suppl) whereas the remaining 15 steers only received pasture (Contr). Carcass and meat traits were evaluated and compared between groups. Gene expression and activities of proteases (calpain 1 and calpain 2) and inhibitor (calpastatin) were measured using real-time polymerase chain reaction and casein zymography. Results: Carcass and meat traits were significantly different between feeding systems. Supplemented steers showed higher hot carcass weight (p<0.01), fat content (p = 0.02), and Warner-Bratzler shear force (p = 0.03). Furthermore, the control group showed higher protease:inhibitor ratios, at mRNA (p = 0.01) and protein levels (p<0.10). Warner-Bratzler shear force and mRNA calpains:calpastatin ratio were associated in both feeding systems (p<0.01). Conclusion: Based on the results obtained in the study, beef tenderness differences among finishing strategies could be modulated through differential expression of the calpain system proteins.

Effect of the Calpain System on Volatile Flavor Compounds in the Beef Longissimus lumborum Muscle

  • Yang, Jieun;Dashdorj, Dashmaa;Hwang, Inho
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.515-529
    • /
    • 2018
  • The present study was designed to investigate the effects of calpain system on the formation of volatile flavor compounds in Hanwoo beef. In the first experiment (exp.1), Longissimus lumborum (LL) muscle samples were injected with solutions containing 50 mM $CaCl_2$ or 50 mM $ZnCl_2$ and 154 mM NaCl respectively, and aged for 7 d at $4^{\circ}C$. In the second experiment (exp.2), the ground LL muscle was incubated with the aforementioned solutions containing cathepsin inhibitor. The injection with $CaCl_2$ solution greatly elevated the calpain activity and concomitantly, significantly decreased the Warner-Bratzler shear force (p<0.05). The pH, meat color and cooking loss did not differ (p>0.05) between the treatment groups. A total of 51 volatile compounds were identified using the solid phase microextraction with gas chromatography (SPME-GC). Results on volatile analyses from the both experiments showed that the injection with calcium ions led to significant increase (p<0.05) concentrations of pyrazines and sulfuric compounds. These results coincide with a higher rate of protein degradation due to the $CaCl_2$ injection as compared to the control group. Significantly (p<0.05) higher levels of lipid oxidation derived-aldehydes were found in the samples with $ZnCl_2$. The exp.1 showed that cathepsin inhibitors had no effect on the formation of volatile flavor components after 7 d of aging. These results imply that the proteolytic activity of the calpain system is associated with generation of volatile compounds of chiller-aged beef, while the role of cathepsins is likely very limited.

Effects of Dietary Treatment, Gender, and Implantation on Calpain/Calpastatin Activity and Meat Tenderness in Skeletal Muscle of Korean Native Cattle

  • Choi, B.H.;Ahn, B.J.;Kook, K.;Sun, S.S.;Myung, K.H.;Moon, S.J.;Kim, K.H.;Kim, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1653-1658
    • /
    • 2002
  • The objectives of this study were to examine calpain activity and meat tenderness by three different feeding patterns in Korean native cattle (KNC). Total forty-five animals were assigned each fifteen in long term restriction feeding (LTFR), long-term restriction feeding and hormone treatment (LTFR-tH), and short term non-restriction feeding (STFNR), respectively. Concentrate was restricted based on body weight in exp 1 and 2. However, it was fed ad libitum in exp. 3. Hormonal implantation was made with $M-PO^{TM}$ for bulls and with $F-TO^{TM}$ for heifers at 18, 20, 22 months of age in exp. 2. Animals were purchased (3-5 month old) from local cattle market and managed in two local farms and university research unit at three different years. Animals were slaughtered at 24 months for long-term trial and at 18 month for short term-trial. Loin and tender loin muscle was used for calpain activity and meat quality. Calpain proteolytic system was not changed by treatment. However, calpastatin activity was low in short-term trial. The calpain and calpastatin activity is reciprocal relationship, therefore, the high calpain activity may effect on quality grade. The shear force value was decreased as the processing of aging after postmortem. On the other hand, the cooking loss was significantly higher in short-term than in long-term trial, and then gradually decreased by the aging. Hormone implants to increase meat yield influenced to calpastatin activity more powerfully than calpain activity to meat tenderness. In meat color-a*, there was not significant difference in loin. Meat color-b* was decreased as postmortem aging time increased in tenderloin. Western blots were done to learn whether these proteins are degraded during postmortem storage and whether this degradation temporally parallels the decrease of shear force value. Vinculin was detected at 0 day and 1 day and degraded after 3 day. In conclusion, Calpain activity was affected slightly on meat tenderness. But meat tenderness was influenced by calpastatin, more effectively.

A New Insight into the Role of Calpains in Post-mortem Meat Tenderization in Domestic Animals: A review

  • Lian, Ting;Wang, Linjie;Liu, Yiping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.443-454
    • /
    • 2013
  • Tenderness is the most important meat quality trait, which is determined by intracellular environment and extracellular matrix. Particularly, specific protein degradation and protein modification can disrupt the architecture and integrity of muscle cells so that improves the meat tenderness. Endogenous proteolytic systems are responsible for modifying proteinases as well as the meat tenderization. Abundant evidence has testified that calpains (CAPNs) including calpain I (CAPN1) and calpastatin (CAST) have the closest relationship with tenderness in livestock. They are involved in a wide range of physiological processes including muscle growth and differentiation, pathological conditions and post-mortem meat aging. Whereas, Calpain3 (CAPN3) has been established as an important activating enzyme specifically expressed in livestock's skeletal muscle, but its role in domestic animals meat tenderization remains controversial. In this review, we summarize the role of CAPN1, calpain II (CAPN2) and CAST in post-mortem meat tenderization, and analyse the relationship between CAPN3 and tenderness in domestic animals. Besides, the possible mechanism affecting post-mortem meat aging and improving meat tenderization, and current possible causes responsible for divergence (whether CAPN3 contributes to animal meat tenderization or not) are inferred. Only the possible mechanism of CAPN3 in meat tenderization has been confirmed, while its exact role still needs to be studied further.

Identification of Polymorphisms in CAST Gene Associated with Economic Traits in Hanwoo (Bos taurus coreanae) (한우(Bos taurus coreanae)의 CAST 유전자 내 변이지역 탐색 및 경제형질과의 연관성 분석)

  • Oh, Jae-Don;Lee, Jin-A;Lee, Kun-Woo;Park, Kyung-Do;Cho, Byung-Wook;Jeon, Gwang-Joo;Lee, Hak-Kyo;Kong, Hong-Sik
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1498-1504
    • /
    • 2010
  • A number of studies have shown that the calpain system is important in normal skeletal muscle growth. An increased rate of skeletal muscle growth can result from a decreased rate of muscle protein degradation, and this is associated with a decrease in activity of the calpain system, due principally to a large increase in calpastatin (CAST) activity. The CAST gene, mapped to BTA 7, is considered a candidate gene for beef tenderness and muscle growth. The present study used comparative sequencing of five novel polymorphisms located within exon 20 and 22 of the bovine CAST gene in Hanwoo: exon20- 109737G/A, 109749T/C, 109823T/C, exon22- 116151G/A, intron- 109926G/A. The association of the CAST SNPs with economic traits was studied. The 109926G/A showed a significant effect only on the longissimus muscle area (LMA, p<0.05) in Hanwoo. 109926G/A with the genotype GG had a significantly higher effect on LMA (75.35) than the genotype AA (69.6, p<0.05). Also, the 116151G/A showed a significant effect only on weight at 18 months (W18, p<0.05). 116151G/A with the genotype GG had a significantly higher effect on W18 (428.54) than the genotype AA (408.87, p<0.05).