• Title/Summary/Keyword: Calibration image

Search Result 801, Processing Time 0.027 seconds

Preliminary Characterization of Secondary Illumination at Shackleton Crater Permanently Shadowed Region from ShadowCam Observations and Modeling

  • Prasun Mahanti;Mark Southwick Robinson;David Carl Humm;Robert Vernon Wagner;Nicholas Michael Estes;Jean-Pierre Williams
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.131-148
    • /
    • 2023
  • Lunar permanently shadowed regions (PSRs) never see direct sunlight and are illuminated only by secondary illumination - light reflected from nearby topography. The ShadowCam imaging experiment onboard the Korea Pathfinder Lunar Orbiter is acquiring images of these PSRs. We characterize and discuss the nature of secondary illumination for the Shackleton PSR from ShadowCam radiance-calibrated images. We also use modeling to understand the magnitude and direction of the secondary illumination. Results from our analysis highlight the non-homogeneous, dynamic, and complex nature of PSR secondary lighting. Knowledge of the direction of the secondary illumination is crucial for reli-able interpretation of contrasts observed in ShadowCam images. This preliminary analysis of the floor of Shackleton crater from images acquired over multiple secondary illumination conditions does not reveal indications of exposed surface ice, even though temperatures are constantly below 110K.

ShadowCam Instrument and Investigation Overview

  • Mark Southwick Robinson;Scott Michael Brylow;Michael Alan Caplinger;Lynn Marie Carter;Matthew John Clark;Brett Wilcox Denevi;Nicholas Michael Estes;David Carl Humm;Prasun Mahanti;Douglas Arden Peckham;Michael Andrew Ravine;Jacob Andrieu Schaffner;Emerson Jacob Speyerer;Robert Vernon Wagner
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.149-171
    • /
    • 2023
  • ShadowCam is a National Aeronautics and Space Administration Advanced Exploration Systems funded instrument hosted onboard the Korea Aerospace Research Institute (KARI) Korea Pathfinder Lunar Orbiter (KPLO) satellite. By collecting high-resolution images of permanently shadowed regions (PSRs), ShadowCam will provide critical information about the distribution and accessibility of water ice and other volatiles at spatial scales (1.7 m/pixel) required to mitigate risks and maximize the results of future exploration activities. The PSRs never see direct sunlight and are illuminated only by light reflected from nearby topographic highs. Since secondary illumination is very dim, ShadowCam was designed to be over 200 times more sensitive than previous imagers like the Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC). ShadowCam images thus allow for unprecedented views into the shadows, but saturate while imaging sunlit terrain.

Orbit Determination of GEO-KOMPSAT-2A Geostationary Satellite (천리안위성 2A호 지구정지궤도위성 궤도결정)

  • Yongrae Kim;Sang-Cherl Lee;Jeongrae Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.199-206
    • /
    • 2024
  • The GEO-KOMPSAT-2A (GK2A) satellite, which was launched in December 2018, carries weather observation payloads and uses the image navigation and registration system to calibrate the observation images. The calibration system requires accurate orbit prediction data and depends on the accuracy of the orbit determination accuracy. In order to find a possible way to improve the current orbit determination accuracy of the GK2A flight dynamic subsystem module, orbit determination software was developed to independently evaluate the orbit determination accuracy. A comprehensive satellite dynamic model is applied for a batch-type least squares filter. When determining the orbit, thrust firing during station-keeping maneuvers and wheel-off loading maneuvers is taken into account. One month of GK2A ranging data were processed to estimate the satellite position on a daily basis. The orbit determination error was evaluated by comparing estimates during overlapping estimation intervals.

Introduction of GOCI-II Atmospheric Correction Algorithm and Its Initial Validations (GOCI-II 대기보정 알고리즘의 소개 및 초기단계 검증 결과)

  • Ahn, Jae-Hyun;Kim, Kwang-Seok;Lee, Eun-Kyung;Bae, Su-Jung;Lee, Kyeong-Sang;Moon, Jeong-Eon;Han, Tai-Hyun;Park, Young-Je
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1259-1268
    • /
    • 2021
  • The 2nd Geostationary Ocean Color Imager (GOCI-II) is the successor to the Geostationary Ocean Color Imager (GOCI), which employs one near-ultraviolet wavelength (380 nm) and eight visible wavelengths(412, 443, 490, 510, 555, 620, 660, 680 nm) and three near-infrared wavelengths(709, 745, 865 nm) to observe the marine environment in Northeast Asia, including the Korean Peninsula. However, the multispectral radiance image observed at satellite altitude includes both the water-leaving radiance and the atmospheric path radiance. Therefore, the atmospheric correction process to estimate the water-leaving radiance without the path radiance is essential for analyzing the ocean environment. This manuscript describes the GOCI-II standard atmospheric correction algorithm and its initial phase validation. The GOCI-II atmospheric correction method is theoretically based on the previous GOCI atmospheric correction, then partially improved for turbid water with the GOCI-II's two additional bands, i.e., 620 and 709 nm. The match-up showed an acceptable result, with the mean absolute percentage errors are fall within 5% in blue bands. It is supposed that part of the deviation over case-II waters arose from a lack of near-infrared vicarious calibration. We expect the GOCI-II atmospheric correction algorithm to be improved and updated regularly to the GOCI-II data processing system through continuous calibration and validation activities.

Validation of Surface Reflectance Product of KOMPSAT-3A Image Data: Application of RadCalNet Baotou (BTCN) Data (다목적실용위성 3A 영상 자료의 지표 반사도 성과 검증: RadCalNet Baotou(BTCN) 자료 적용 사례)

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1509-1521
    • /
    • 2020
  • Experiments for validation of surface reflectance produced by Korea Multi-Purpose Satellite (KOMPSAT-3A) were conducted using Chinese Baotou (BTCN) data among four sites of the Radical Calibration Network (RadCalNet), a portal that provides spectrophotometric reflectance measurements. The atmosphere reflectance and surface reflectance products were generated using an extension program of an open-source Orfeo ToolBox (OTB), which was redesigned and implemented to extract those reflectance products in batches. Three image data sets of 2016, 2017, and 2018 were taken into account of the two sensor model variability, ver. 1.4 released in 2017 and ver. 1.5 in 2019, such as gain and offset applied to the absolute atmospheric correction. The results of applying these sensor model variables showed that the reflectance products by ver. 1.4 were relatively well-matched with RadCalNet BTCN data, compared to ones by ver. 1.5. On the other hand, the reflectance products obtained from the Landsat-8 by the USGS LaSRC algorithm and Sentinel-2B images using the SNAP Sen2Cor program were used to quantitatively verify the differences in those of KOMPSAT-3A. Based on the RadCalNet BTCN data, the differences between the surface reflectance of KOMPSAT-3A image were shown to be highly consistent with B band as -0.031 to 0.034, G band as -0.001 to 0.055, R band as -0.072 to 0.037, and NIR band as -0.060 to 0.022. The surface reflectance of KOMPSAT-3A also indicated the accuracy level for further applications, compared to those of Landsat-8 and Sentinel-2B images. The results of this study are meaningful in confirming the applicability of Analysis Ready Data (ARD) to the surface reflectance on high-resolution satellites.

Gaze Tracking System Using Feature Points of Pupil and Glints Center (동공과 글린트의 특징점 관계를 이용한 시선 추적 시스템)

  • Park Jin-Woo;Kwon Yong-Moo;Sohn Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.11 no.1 s.30
    • /
    • pp.80-90
    • /
    • 2006
  • A simple 2D gaze tracking method using single camera and Purkinje image is proposed. This method employs single camera with infrared filter to capture one eye and two infrared light sources to make reflection points for estimating corresponding gaze point on the screen from user's eyes. Single camera, infrared light sources and user's head can be slightly moved. Thus, it renders simple and flexible system without using any inconvenient fixed equipments or assuming fixed head. The system also includes a simple and accurate personal calibration procedure. Before using the system, each user only has to stare at two target points for a few seconds so that the system can initiate user's individual factors of estimating algorithm. The proposed system has been developed to work in real-time providing over 10 frames per second with XGA $(1024{\times}768)$ resolution. The test results of nine objects of three subjects show that the system is achieving an average estimation error less than I degree.

Construction and Data Analysis of Test-bed by Hyperspectral Airborne Remote Sensing (초분광 항공원격탐사 테스트베드 구축 및 시험자료 획득)

  • Chang, Anjin;Kim, Yongil;Choi, Seokkeun;Han, Dongyeob;Choi, Jaewan;Kim, Yongmin;Han, Youkyung;Park, Honglyun;Wang, Biao;Lim, Heechang
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.161-172
    • /
    • 2013
  • The construction of hyperspectral test-bed dataset is essential for the effective performance of hyperspectral image for various applications. In this study, we analyzed the technical points for generating of optimal hyperspectral test-bed site for hyperspectral sensors and the efficiency of hyperspectral test-bed site. In this regard regions we analyzed existing construction techniques for generating test-bed site in domestic and foreign, and designed the test-bed site to acquire images from the airborne hyperspectral sensor. To produce a reference data from the image of constructed test-bed site, this study applied vicarious correction as a pre-processing and analyzed its efficiency. The result presented that it was ideal to use tarp for the vicarious correction, but it is possible to use the materials with constant spectral reflectance or with relatively low variance of spectral reflectance. The test-bed data taken in this study can be employed as the reference of domestic and foreign studies for hyperspectral image processing.

Quantitative Analysis of Effects for Quality Control on Medical Primary Class LCD Display Devices Based on AAPM TG18 Report (AAPM TG18에 의한 진단용 LCD 디스플레이 장치 정도관리 효과의 정량적 분석)

  • Jung Hai-Jo;Kim Hee-Joung
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.77-82
    • /
    • 2006
  • The image display is an Important component of PACS and of medical digital imaging chain. Displayed image qualify is affected by the physical characteristics of display device, appropriate clinical settings and calibrations, and ambient lighting conditions. The performance of display systems is continuously degraded over time due to luminance deterioration and changes of clinical setting parameters. A routine QC is recommended because the performance of display systems is continuously degraded over time. Ten flat panel monochrome LCD display devices were included in the evaluation of the QC effect. The effect of QC on primary class LCD medical display devices for selected QC tests was evaluated by comparing the performances, luminance response, luminance dependencies, display resolution and display chromaticity in this study, of before and after the calibration procedures. The effects of the QC are significant to luminance response and luminance spatial dependencies test and the other side, are slight to the display resolution and display chromaticity test. A routine QC of display device is essential for the consistency of medical image display and presentation. The study of the QC effects of display devices will play an important role in practical QC procedures of display devices.

  • PDF

Georeferencing of Indoor Omni-Directional Images Acquired by a Rotating Line Camera (회전식 라인 카메라로 획득한 실내 전방위 영상의 지오레퍼런싱)

  • Oh, So-Jung;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.211-221
    • /
    • 2012
  • To utilize omni-directional images acquired by a rotating line camera for indoor spatial information services, we should register precisely the images with respect to an indoor coordinate system. In this study, we thus develop a georeferencing method to estimate the exterior orientation parameters of an omni-directional image - the position and attitude of the camera at the acquisition time. First, we derive the collinearity equations for the omni-directional image by geometrically modeling the rotating line camera. We then estimate the exterior orientation parameters using the collinearity equations with indoor control points. The experimental results from the application to real data indicate that the exterior orientation parameters is estimated with the precision of 1.4 mm and $0.05^{\circ}$ for the position and attitude, respectively. The residuals are within 3 and 10 pixels in horizontal and vertical directions, respectively. Particularly, the residuals in the vertical direction retain systematic errors mainly due to the lens distortion, which should be eliminated through a camera calibration process. Using omni-directional images georeferenced precisely with the proposed method, we can generate high resolution indoor 3D models and sophisticated augmented reality services based on the models.

Evaluation of the Radiopacity of Contemporary Luting Cements by Digital Radiography (디지털방사선촬영술을 이용한 합착용 시멘트의 방사선불투과성 평가)

  • An, Seo-Young;Lee, Du-Hyeong;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.4
    • /
    • pp.377-383
    • /
    • 2013
  • This study examined the radiopacity of eight contemporary luting cements by direct digital radiography. Five disc-shaped specimens ($5mm{\times}1mm$) were prepared for each material tested (BisCem, Clearfil SA Luting, Duolink, Maxcem Elite, Multilink Speed, Panavia F 2.0, RelyX Unicem Clicker, V-link). The specimens were radiographed using a Kodak CS 7600 image plate (Carestream Health, Inc., Rochester, NY, USA) and an aluminum step wedge with a range of thicknesses (1.5 to 16.5 mm in 1.5 mm increments) and a 1 mm tooth used as a reference. A dental X-ray machine Kodak 2200 Intraoral X-ray System (Carestream Health, Inc., Rochester, NY, USA), operating at 70 kVp, 4 mA, 0.156 s and a source-to-sample distance of 30 cm, was used. According to international standards, the radiopacity of the specimens was compared with that of an aluminum step wedge using NIH ImageJ software (available at http://rsb.info.nih.gov/ij/).The data was analyzed by ANOVA and a Tukey's post hoc test. Maxcem Elite (5.66) showed the highest radiopacity of all materials, followed in order by Multilink Speed (3.87) and V-link (2.83). The radiopacity of Clearfil SA Luting (1.35), BisCem (1.33), Panavia F 2.0 (1.29) and Duolink (1.10) were between enamel (1.79) and dentin (0.19). RelyX Unicem Clicker (0.71) showed the lowest radiopacity, which was higher than that of dentin. All materials showed a radiopacity above the minimum recommended by the International Organization for Standardization and the American National Standards/American Dental Association with the exception of RelyX Unicem Clicker.