• Title/Summary/Keyword: Calibration Uncertainties

Search Result 117, Processing Time 0.024 seconds

A Study on the Uncertainty Estimation of Flowmeter Calibrator with Two Master Flowmeters (2개의 기준유량계를 이용한 유량계 교정장치의 측정불확도 평가에 관한 연구)

  • Choi Jong Oh;Lee Woan Kyu;Lim Ki Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1219-1230
    • /
    • 2004
  • Comparing to the gravimetric and volumetric method, the flowmeter calibration based on the master meter method is relatively economical and convenient, especially for high flowrate. The uncertainty of flow quantity and flowrate using the master meter method was evaluated according to the GUM (Guide to the Expression of Uncertainty in Measurement). In order to apply for the wider flow range, two master meters (electromagnetic flow meter) were employed as reference flowmeters. The uncertainty of the master meter was obtained by combining the statistical variation of the repeated measurements and the variation of fluid density and pipe material due to temperature and pressure changes were scrutinized. for a practical application, the uncertainty of calibrator, whose measuring capacity of 1000 ㎥/h obtained by employing two 500 ㎥/h electromagnetic How meters, was evaluated. The uncertainty budget shows the quantitative contribution of each uncertainty component to the overall uncertainty of the calibrator. As a result, it was found that the dominant uncertainties were from the master meter, which was evaluated statistically, and from the process of least squares fitting. On the contrary, the uncertainties arising from the variation of the fluid density and the pipe volume due to the temperature and pressure were negligible.

The Selection of Sample Injection Modes and Its Effect on the Calibration Bias in S Gas Detection by Gas Chromatography (GC의 주입방식 차에 따른 고농도 악취황 성분의 검량오차 연구 : 주입부피의 고정방식 대비 주입농도의 고정방식 간 비교연구)

  • Kim Ki-Hyun;Choi YJ
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.269-274
    • /
    • 2005
  • In this work, analytical bias arising from the gas chromatographic determination of sulfur compounds was evaluated by the application of direct loop injection method to the GC/PFPD detection of four sulfur compounds including H$_{2}$S, CH$_{3}$SH, DMS, and DMDS. For the proper evaluation of analytical uncertainties involved in GC calibration, we employed two comparative techniques of calibration at fxed concentration injection (CFCI) vs calibration at fixed volume injection (CFVI) method. The results of our study indicate that CFCI method exhibits very poor sensitivity due to the matrix effect with varying injection volumes. On the other hand, as CFVI method overcomes such limitation, it can be used to obtain very accurate quantification of S compounds at their high concentration levels above a few to a few tens ppb.

Effect of Contact Stiffness on Lateral Force Calibration of Atomic Force Microscopy Cantilever (원자 현미경 탐침의 수평방향 힘 교정에 미치는 접촉 강성의 영향)

  • Tran, Da Khoa;Jeon, Ki-Joon;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.289-296
    • /
    • 2012
  • Atomic force microscopy (AFM) has been used for imaging surfaces and measuring surface forces at the nano-scale. Force calibration is important for the quantitative measurement of forces at the nano-scale using AFM. Normal force calibration is relatively straightforward, whereas the lateral force calibration is more complicated since the lateral stiffness of the cantilever is often comparable to the contact stiffness. In this work, the lateral force calibrations of the rectangular cantilever were performed using torsional Sader's method, thermal noise method, and wedge calibration method. The lateral optical lever sensitivity for the thermal noise method was determined from the friction loop under various normal forces as well. Experimental results showed that the discrepancies among the results of the different methods were as large as 30% due to the effect of the contact stiffness on the lateral force calibration of the cantilever used in this work. After correction for the effect of contact stiffness, all the calibration results agreed with each other, within experimental uncertainties.

Safety factor calibration for bridge concrete girders

  • Silva, Rita C.;Cremona, Christian
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.163-182
    • /
    • 2014
  • Safety factors proposed in codes CEB, B.A.E.L 91 and EUROCODE 1 cover a great number of uncertainties; making them inadequate for the assessment of existing structures. Suitable safety factors are established using a probabilistic assessment, once real dimensions, materials strength and existing structures deterioration mechanisms are taken into account. This paper presents a calibration method for safety factors using a typical set of RC bridges in France. It considers the principal stages of corrosion provoked by $CO_2$ and $Cl^-$ penetration and threshold indexes (${\beta}_0$) for existing structures. Reliability indexes are determined by the FORM method in the calibration method.

Development of a Ratio Calibration Bridge for Inductive Voltage Dividers (유도형 전압 분할기의 비 교정용 브리지 개발)

  • Kang Jeon Hong;Han Sang Ok;Kim Han Jun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.5
    • /
    • pp.217-221
    • /
    • 2005
  • A inductive voltage divider(IVD) is widely used as a ratio arm of precise impedance measurement bridges at low frequencies of audio frequency range and a well fabricated IVD has ratio error of $10^{-7}$ order without any calibration. Recently, the order of $10^{-8}$ of the best measurement uncertainty is needed for calibration and maintenance of impedance standards as national standards. In order to achieve that uncertainty, the IVD which is used for a ratio arm of precise impedance measurement bridge should be calibrated within the uncertain of order of $10^{-8}$ For this purpose, a ratio calibration bridge for IVDs has been developed. The measurement uncertainties of both inphase and quadrature of the bridge are analyzed less then $3{\times}10^{-8}$ respectively at 1 kHz and 25 V.

A Study on the Measurement Uncertainty of Flowmeter Calibrator (유량계 교정장치의 측정불확도에 관한 연구)

  • Im, Gi-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.561-571
    • /
    • 2001
  • The standard uncertainty of flowrate measurement is obtained by combining that of independent variables. Gravimetric and volumetric method were applied to determine the flowrate and the standard uncertainties of flowrate measurement by both methods were evaluated in accordance with the procedure recommended by International Organization for Standardization. The combined standard uncertainties of determining the flowrate were estimated from the sensitivity coefficient and the standard uncertainty of independent variables. For practical application, the methods for evaluating and expressing uncertainty in flow measurement were discussed. It was found that the uncertainties of the weighing and time measurement in gravimetric method, the volume and time measurement in volumetric method have dominant influence on that of flowrate measurement. With the quantitative analysis of the sensitivity coefficient, the contribution of the each variable uncertainty to the combined standard uncertainty of flowrate measurement is shown clearly.

Calibration System for Angular Vibration Using Precision Rotary Encoder (고정밀 회전엔코더를 이용한 회전진동 교정시스템)

  • Nam, Seunghwan;Baik, Kyungmin;Cheung, Wan-Sup
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • In this paper, two calibration methods for angular vibration pickups using a precision rotary encoder are proposed. The KRISS (Korea Research Institute of Standards and Science) primary angular vibration calibration system and the calibration procedures are briefly explained. The rotary encoder is shown to be calibrated in two methods: The one is to use the laser interferometer to calibrate the rotary encoder under test and the other is to exploit the certificate of the encoder supplied. Complex sensitivities measured from the first are shown to be less than 0.1 % difference in magnitude and $0.01^{\circ}$ difference in phase shift in reference to those of the primary calibration system. Their expanded uncertainties were observed to be less than 0.6 % in magnitude and $0.4^{\circ}$ in phase shift over the range of 0.4 to 200 Hz. Under the same calibration conditions, complex sensitivities evaluated by the second method are shown be 0.1 % difference in magnitude and $0.6^{\circ}$ difference in phase shift in reference to those of the primary calibration system. Their expanded uncertainties were seen to be less than 4.8 % in magnitude and $2.8^{\circ}$ in phase shift.

A Study on the Development and the Uncertainty Analysis of Oil Flow Standard System (기름 유량표준장치의 개발 및 측정 불확도에 관한 연구)

  • Lim, Ki-Won;Choi, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1071-1080
    • /
    • 2003
  • A national standard system was developed in order to calibrate and test the oil flowmeters for the petroleum field. A stop valve and a gyroscopic weighing scale were employed for the primary standard of the flow quantity. It is operated by the standing start and finish mode and the static weighing method. The model equation for uncertainty evaluation was based on the calibration principle of standard system. The sources of the uncertainties were quantified and combined according to the GUM(Guide to the Expression of Uncertainty in Measurement). It was found that the standard system had the relative expanded uncertainty of 0.04 % in the range of 18 - 350 ㎥/h. According to the uncertainty budget, the uncertainties of the fluid density and the volume of pipeline, which were temperature dependent, contributed 92% of final uncertainty in the oil flow standard system.

Analysis and Evaluation of the Accuracy of Electromagnetic Power Measurement at National Calibration and Test Organizations (국가교정검사기관의 전자파전력 측정정확도의 분석 및 평가)

  • 강태원;강웅택;박병권
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.1
    • /
    • pp.53-60
    • /
    • 1995
  • The aims of this study are to evaluate the measurement capability of the electromagnetic power and to understand the current state of standard maintanance of the eight participants among the thirteen national calibration and test organizations. The calibration factors were measured at six test frequencies, 50, 100, 500, 1000, 5000, 10000 MHz by organizations and KRISS on the basis of round robin test. The results were analyzed by calculating the standard deviation of the measured values from the standard values. The analysis shows good agreement within 1.0% for all participants at the measurement frequencies. Therefore, the measurement capability of all participants is good in the frequency range of 50 MHz to 10 GHz. For the four participants which specified standard deviations of repeated measurements in their reporst, the total uncertainties is less than 1.9% at the measurement frequencies.

  • PDF

Accurate Determination of Spring Constants of Micro Cantilevers for Quantified Force Metrology in AFM (AFM에서의 정량적 힘 측정을 위한 마이크로 캔틸레버의 강성 교정)

  • Kim, Min-Seok;Choi, Jae-Hyuk;Kim, Jong-Ho;Park, Yon-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.96-104
    • /
    • 2007
  • Calibration of the spring constants of atomic force microscopy (AFM) cantilevers is one of the issues in biomechanics and nanomechanies for quantified force metrology at pieo- or nano Newton level. In this paper, we present an AFM cantilever calibration system: the Nano Force Calibrator (NFC), which consists of a precision balance and a one-dimensional stage. Three types of AFM cantilevers (contact and tapping mode) with different shapes (beam and V) and spring constants (42, 1, 0.06 N $m^{-1}$) are investigated using the NFC. The calibration results show that the NFC can calibrate the micro cantilevers ranging from 0.01 ${\sim}$ 100 N $m^{-1}$ with relative uncertainties of less than 2%.