• 제목/요약/키워드: Calibration Uncertainties

검색결과 117건 처리시간 0.038초

Landsat-8을 활용한 Sentinel-2A Near Infrared 채널의 Spectral Band Adjustment Factor 적용성 평가 (Evaluation of Spectral Band Adjustment Factor Applicability for Near Infrared Channel of Sentinel-2A Using Landsat-8)

  • 김나연;성노훈;정대성;심수영 ;우종호;최성원;박성우;한경수
    • 대한원격탐사학회지
    • /
    • 제39권3호
    • /
    • pp.363-370
    • /
    • 2023
  • 다양한 지구관측위성은 발사 후 정확한 고품질의 자료를 제공하는 것이 중요하다. 위성 자료 품질을 유지 및 보완하기 위해서는 서로 다른 센서 차이를 고려하는 spectral band adjustment factor (SBAF)를 활용한 교차 검보정 과정이 필요하다. 따라서 본 연구에서는 pseudo-invariant calibration sites 중 Libya4, Algeria3, Mauritania2 에서 수집한 Landsat-8, Sentinel-2A 위성 영상을 활용하여 SBAF 산출 및 적용을 통해 밴드 대역 폭 차이로 인해 발생하는 불확실성을 조정하였다. 두 위성 모두 Blue, Green, Red를 포함하고 Sentinel-2A의 경우 near-infrared (NIR) narrow와 NIR 두 가지 밴드 모두에 SBAF를 적용하여 밴드대역폭 유사도에 따른 반사도 차이를 정량적으로 비교하였다. SBAF 적용 후, NIR을 제외한 모든 밴드(Blue, Green, Red, NIR narrow)에서 1% 내외의 반사도 차이로 유의미한 결과가 나타났다. Sentinel-2A NIR 밴드의 경우 밴드대역폭 차이가 NIR narrow에 비해 크게 나타났지만, SBAF 적용 후에 반사도 차이가 허용 오차범위인 5%와 1-2% 차이로 SBAF 적용이 가능한 것으로 나타났다. 따라서, 위성 활용이 제한적인 상황에서 두 센서의 밴드대역폭 차이가 큰 경우에도 SBAF를 적용할 수 있다고 판단하였고 위성 자료의 품질 및 연속성을 활용하는 연구에 도움이 될 것으로 기대된다.

오차 계산 방식에 따른 사료용 벼 품종의 품종모수 추정치 불확도 비교 (Comparison between Uncertainties of Cultivar Parameter Estimates Obtained Using Error Calculation Methods for Forage Rice Cultivars)

  • 조영상;현신우;김광수
    • 한국농림기상학회지
    • /
    • 제25권3호
    • /
    • pp.129-141
    • /
    • 2023
  • 작물 모형은 작물의 유전적 특성을 나타내는 품종모수를 요구하며, 품종모수는 작물의 개별 품종별로 추정되어야 한다. 품종모수의 추정에는 고품질의 많은 생육 자료가 요구되지만, 자료의 생산에 상당한 비용이 필요하다. 비교적 낮은 품질의 가용성이 높은 자료를 활용하는 대신, 대량의 랜덤 모수를 생성하고 이를 평가하여 품종모수를 추정할 수 있다. 본 연구에서는 SIMPLE 작물 모델의 불확도를 최소화하기 위해 품종모수 추정 방식을 비교하고, 두 앙상블 방식과 대한 비교를 하였다. 모수 추정을 위한 Metropolis-Hastings (MH) 알고리즘에 대한 목적함수로 로그 가능도(log-likelihood: LL)와 generic composite similarity measure (GCSM)를 사용하였다. 또한 품종모수의 평균값을 사용한 예측(Epm)과 개별 모수들로부터 얻어진 추정값의 평균값(Eem)의 일치도를 분석하여 앙상블 방식에 따른 불확도 변화를 파악하였다. 국내에서 재배되는 사료용 벼 품종인 조우 벼와 영우 벼를 대상으로 품종모수를 추정하였다. 2013년, 2014년, 2016년에 대한 수원, 전주, 나주, 익산에 위치한 실험포장에서 얻은 수량 관측 자료를 사용하였다. 또한 2016년부터 2018년까지 수원에서 보고된 별도의 수량 관측 자료를 사용하였다. 목적함수에 따라 추정된 품종모수의 분포에 차이가 있었다. LL을 통해 얻은 품종모수는 GCSM으로 얻은 품종모수보다 좁은 범위에 분포하였다. 두 가지 앙상블 접근법은 통계적으로 유의한 차이가 나타나지 않음을 확인하였다. GCSM의 상대적으로 높은 불확도는 수용확률을 조정하여 낮출 수 있다고 사료되고, Epm의 결과는 기존과 다른 앙상블 방식을 통해 적은 연산을 통해 불확도를 낮출 수 있음을 보인다.

길이 표준 소급성을 갖는 원자간력 현미경을 이용한 2차원 격자 시편 측정과 불확도 평가 (Measurements of Two-dimensional Gratings Using a Metrological Atomic Force Microscope and Uncertainty Evaluation)

  • 김종안;김재완;강주식;엄태봉
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.68-75
    • /
    • 2007
  • The pitch and orthogonality of two-dimensional (2D) gratings have been measured by using a metrological atomic force microscope (MAFM) and measurement uncertainty has been analyzed. Gratings are typical standard artifacts for the calibration of precision microscopes. Since the magnification and orthogonality in two perpendicular axes of microscopes can be calibrated simultaneously using 2D gratings, it is important to certify the pitch and orthogonality of 2D gratings accurately for nano-metrology using precision microscopes. In the measurement of 2D gratings, the MAFM can be used effectively for its nanometric resolution and uncertainty, but a new measurement scheme was required to overcome some limitations of current MAFM such as nonnegligible thermal drift and slow scan speed. Two kinds of 2D gratings, each with the nominal pitch of 300 nm and 1000 nm, were measured using line scans for the pitch measurement of each direction. The expanded uncertainties (k = 2) of measured pitch values were less than 0.2 nm and 0.4 nm for each specimen, and those of measured orthogonality were less than 0.09 degree and 0.05 degree respectively. The experimental results measured using the MAFM and optical diffractometer were coincident with each other within the expanded uncertainty of the MAFM. As a future work, we also proposed another scheme for the measurements of 2D gratings to increase the accuracy of calculated peak positions.

철근콘크리트 부재 저항능력의 통계적 모델 개발 (Development of Statistical Models for Resistance of Reinforced Concrete Members)

  • 김지상;김종호
    • 대한토목학회논문집
    • /
    • 제31권4A호
    • /
    • pp.323-329
    • /
    • 2011
  • 대부분의 콘크리트구조설계기준은 구조물의 안전에 대한 여유를 확보하기 위해 하중계수 및 저항계수의 안전계수를 고려하고 있다. 이 안전계수는 하중과 저항의 통계적 불확실성을 적절하게 고려한 구조신뢰성 이론에 근거하여 결정되어야 하는데, 구조신뢰성 이론의 적용은 하중 및 저항에 대한 통계적 모델의 정립이 선행되어야 한다. 이 논문에서는 콘크리트 압축강도, 철근 항복강도 및 부재 단면치수의 통계적 변동성을 고려한 철근콘크리트 부재의 저항모델을 개발하였다. 통계모델 개발에 적용된 자료는 국내의 실험 및 시험 자료를 기초로 하였으며, 몬테칼로 시뮬레이션(Monte Carlo Simulation)기법을 적용하였다. 이 논문의 결과는 콘크리트 구조설계 기준의 검증 및 개정작업에 유용한 자료를 제공할 것으로 기대된다.

Development of the CAP Water Quality Model and Its Application to the Geum River, Korea

  • Seo, Dong-Il;Lee, Eun-Hyoung;Reckhow, Kenneth
    • Environmental Engineering Research
    • /
    • 제16권3호
    • /
    • pp.121-129
    • /
    • 2011
  • The completely mixed flow and plug flow (CAP) water quality model was developed for streams with discontinuous flows, a condition that often occurs in low base flow streams with in-stream hydraulic structures, especially during dry seasons. To consider the distinct physical properties of each reach effectively, the CAP model stream network can include both plug flow (PF) segments and completely mixed flow (CMF) segments. Many existing water quality models are capable of simulating various constituents and their interactions in surface water bodies. More complicated models do not necessarily produce more accurate results because of problems in data availability and uncertainties. Due to the complicated and even random nature of environmental forcing functions, it is not possible to construct an ideal model for every situation. Therefore, at present, many governmental level water quality standards and decisions are still based on lumped constituents, such as the carbonaceous biochemical oxygen demand (CBOD), the total nitrogen (TN) or the total phosphorus (TP). In these cases, a model dedicated to predicting the target concentration based on available data may provide as equally accurate results as a general purpose model. The CAP model assumes that its water quality constituents are independent of each other and thus can be applied for any constituent in waters that follow first order reaction kinetics. The CAP model was applied to the Geum River in Korea and tested for CBOD, TN, and TP concentrations. A trial and error method was used for parameter calibration using the field data. The results agreed well with QUAL2EU model predictions.

원격탐사자료를 이용한 시⋅공간적으로 분포되어 있는 토양수분산정 및 가뭄평가:(I) 토양수분 (Soil Moisture Estimation and Drought Assessment at the Spatio-Temporal Scales using Remotely Sensed Data: (I) Soil Moisture)

  • 신용철;최경숙;정영훈;양재의;임경재
    • 한국물환경학회지
    • /
    • 제32권1호
    • /
    • pp.60-69
    • /
    • 2016
  • In this study, we estimated root zone soil moisture dynamics using remotely sensed (RS) data. A soil moisture data assimilation scheme was used to derive the soil and root parameters from MODerate resolution Imaging Spectroradiometer (MODIS) data. Based on the estimated soil/root parameters and weather forcings, soil moisture dynamics were simulated at spatio-temporal scales based on a hydrological model. For calibration/validation, the Little Washita (LW13) in Oklahoma and Chungmi-cheon/Seolma-cheon sites were selected. The derived water retention curves matched the observations at LW 13. Also, the simulated soil moisture dynamics at these sites was in agreement with the Time Domain Reflectrometry (TDR)-based measurements. To test the applicability of this approach at ungauged regions, the soil/root parameters at the pixel where the Seolma-cheon site is located were derived from the calibrated MODIS-based (Chungmi-cheon) soil moisture data. Then, the simulated soil moisture was validated using the measurements at the Seolma-cheon site. The results were slightly overestimated compared to the measurements, but these findings support the applicability of this proposed approach in ungauged regions with predictable uncertainties. These findings showed the potential of this approach in Korea. Thus, this proposed approach can be used to assess root zone soil moisture dynamics at spatio-temporal scales across Korea, which comprises mountainous regions with dense forest.

Determination of Dibutyltin in Sediments Using Isotope Dilution Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry

  • Yim, Yong-Hyeon;Park, Ji-Youn;Han, Myung-Sub;Park, Mi-Kyung;Kim, Byung-Joo;Lim, Young-Ran;Hwang, Eui-Jin;So, Hun-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권3호
    • /
    • pp.440-446
    • /
    • 2005
  • A method is described for the determination of dibutyltin (DBT) in sediment by isotope dilution using liquid chromatography inductively-coupled plasma/mass spectrometry (LC-ICP/MS). To achieve the highest accuracy and precision, special attentions are paid in optimization and evaluation of overall processes of the analysis including extraction of analytes, characterization of the standards used for calibration and LC-ICP/MS conditions. An approach for characterization of natural abundance DBT standard has been developed by combining inductively-coupled plasma/optical emission spectrometry (ICP/OES) and LC-ICP/MS for the total Sn assay and the analysis of Sn species present as impurities, respectively. An excellent LC condition for separation of organotin species was found, which is suitable for simultaneous DBT and tributyltin (TBT) analysis as well as impurity analysis of DBT standards. Microwave extraction condition was also optimized for high efficiency while preventing species transformation. The present method determines the amount contents of DBT in sediments with expanded uncertainty of less than 5% and its result shows high degree of equivalence with reference values of an international inter-comparison and a certified reference material (CRM) within stated uncertainties.

Physical Properties of Transiting Planetary System TrES-3

  • Lee, Jae-Woo;Youn, Jae-Hyuck;Kim, Seung-Lee;Lee, Chung-Uk;Koo, Jae-Rim;Park, Byeong-Gon
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.65.2-65.2
    • /
    • 2010
  • We present four new transits of the planetary system TrES-3 observed between 2009 May and 2010 June. Among those, the third transit by itself indicates possible evidence for brightness disturbance, which could originate from a starspot or an overlapping double transit. A total of 107 transit times, including our measurements, were used to determine the improved ephemeris with a transit epoch of $2454185.910950\pm0.000073$ HJED (Heliocentric Julian Ephemeris Date) and an orbital period of $1.30618698\pm0.00000016$ d. We analyzed the transit light curves using the JKTEBOP code and adopting the quadratic limb-darkening law. In order to derive the physical properties of the TrES-3 system, the transit parameters are combined with the empirical relations from eclipsing binary stars and stellar evolutionary models, respectively. The stellar mass and radius obtained from a calibration using $T_{eff}$, log $\rho$ and [Fe/H] are in good agreement with those from the isochrone analysis within the uncertainties. We found that the exoplanet TrES-3b has a mass of $1.93\pm0.07\;M_{Jup}$, a radius of $1.30\pm0.04\;R_{Jup}$, a surface gravity of $28.2\pm1.1\;m\;s^{-1}$, a density of $0.82\pm0.06\;\rho_{Jup}$, and an equilibrium temperature of $1641\pm23K$.

  • PDF

Measurements of Two-dimensional Gratings Using a Metrological Atomic Force Microscope with Uncertainty Evaluation

  • Kim, Jong-Ahn;Kim, Jae-Wan;Kang, Chu-Shik;Eom, Tae-Bong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권2호
    • /
    • pp.18-22
    • /
    • 2008
  • The pitch and orthogonality of two-dimensional (2-D) gratings were measured using a metrological atomic force microscope (MAFM), and the measurement uncertainty was analyzed. Gratings are typical standard devices for the calibration of precision microscopes, Since the magnification and orthogonality in two perpendicular axes of microscopes can be calibrated simultaneously using 2-D gratings, it is important to certify the pitch and orthogonality of such gratings accurately for nanometrology. In the measurement of 2-D gratings, the MAFM can be used effectively for its nanometric resolution and uncertainty, but a new measurement scheme is required to overcome limitations such as thermal drift and slow scan speed. Two types of 2-D gratings with nominal pitches of 300 and 1000 nm were measured using line scans to determine the pitch measurement in each direction. The expanded uncertainties (k = 2) of the measured pitch values were less than 0.2 and 0.4 nm for each specimen, and the measured orthogonality values were less than $0.09^{\circ}$ and $0.05^{\circ}$, respectively. The experimental results measured using the MAFM and optical diffractometer agreed closely within the expanded uncertainty of the MAFM. We also propose an additional scheme for measuring 2-D gratings to increase the accuracy of calculated peak positions, which will be the subject of future study.

Markov-Chain Monte Carlo 기법을 이용한 준 분포형 수문모형의 매개변수 및 모형 불확실성 분석 (Parameter and Modeling Uncertainty Analysis of Semi-Distributed Hydrological Model using Markov-Chain Monte Carlo Technique)

  • 최정현;장수형;김상단
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.373-384
    • /
    • 2020
  • Hydrological models are based on a combination of parameters that describe the hydrological characteristics and processes within a watershed. For this reason, the model performance and accuracy are highly dependent on the parameters. However, model uncertainties caused by parameters with stochastic characteristics need to be considered. As a follow-up to the study conducted by Choi et al (2020), who developed a relatively simple semi-distributed hydrological model, we propose a tool to estimate the posterior distribution of model parameters using the Metropolis-Hastings algorithm, a type of Markov-Chain Monte Carlo technique, and analyze the uncertainty of model parameters and simulated stream flow. In addition, the uncertainty caused by the parameters of each version is investigated using the lumped and semi-distributed versions of the applied model to the Hapcheon Dam watershed. The results suggest that the uncertainty of the semi-distributed model parameters was relatively higher than that of the lumped model parameters because the spatial variability of input data such as geomorphological and hydrometeorological parameters was inherent to the posterior distribution of the semi-distributed model parameters. Meanwhile, no significant difference existed between the two models in terms of uncertainty of the simulation outputs. The statistical goodness of fit of the simulated stream flows against the observed stream flows showed satisfactory reliability in both the semi-distributed and the lumped models, but the seasonality of the stream flow was reproduced relatively better by the distributed model.