• Title/Summary/Keyword: Calibration Method

Search Result 2,835, Processing Time 0.027 seconds

Study on the Observability of Calibration System with a Constraint Oprerator (구속연산자에 의한 보정 시스템의 관측성에 관한 연구)

  • Lee, Min-Ki;Kim, Tae-Sung;Park, Kun-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.647-655
    • /
    • 2003
  • This paper studies the observability of calibration system with a constraint movement by a constraint operator. The calibration system with the constraint movement need only simple sensing device to check whether the constraint movements are completed within an established range. However, it yields the concern about the poor parameter observability due to the constraint movements. This paper uses the QR-decomposition to find the optimal calibration configurations maximizing the linear independence of rows of a observation matrix. The number of identifiable parameters are examined by the rank of the observation matrix, which represents the parameter observability. The method is applied to a parallel typed machining center and the calibration results are presented. These results verify that the calibration system with low-cost indicators and simple planar table is accurate as well as reliable.

A New Calibration Method Based on the Recursive Linear Regression with Variables Selection

  • Park, Kwang-Su;Jun, Chi-Hyuck
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1241-1241
    • /
    • 2001
  • We propose a new calibration method, which uses the linearization method for spectral responses and the repetitive adoptions of the linearization weight matrices to construct a frature. Weight matrices are estimated through multiple linear regression (or principal component regression or partial least squares) with forward variable selection. The proposed method is applied to three data sets. The first is FTIR spectral data set for FeO content from sinter process and the second is NIR spectra from trans-alkylation process having two constituent variables. The third is NIR spectra of crude oil with three physical property variables. To see the calibration performance, we compare the new method with the PLS. It is found that the new method gives a little better performance than the PLS and the calibration result is stable in spite of the collinearity among each selected spectral responses. Furthermore, doing the repetitive adoptions of linearization matrices in the proposed methods, uninformative variables are disregarded. That is, the new methods include the effect of variables subset selection, simultaneously.

  • PDF

Determination of Aqueous Ammonia with Indophenol Method : Comparision and Evaluation for the Reaction-Rate, Equilibrium and Flow-Injection Analysis Methods (인도페놀법을 이용한 수용액 중 암모니아 정량에 관한 연구 : 평형법, 반응속도법, 흐름주입분석법의 비교와 평가)

  • 정형근;김범식
    • Journal of Environmental Science International
    • /
    • v.4 no.1
    • /
    • pp.91-103
    • /
    • 1995
  • The reaction rate, equilibrium, and flow injection analysis methods were fundamentally evaluated for the determination of aqueous ammonia. The selected indophenol blue method was based on the formation of indophenol blue in which ammonium ion reacted with hypochlorite and phenol in alkaline solution. In the optimized reaction condition, the reaction followed 1st order reaction kinetics and the final product was stable. The absorbance measurements before and after the equilibrium were utilized for the reaction rate and equilibrium methods. The reaction rate methods, based on the relative analytical signals for the possibility of eliminating interferents, were shown to have good linear calibration curves but the detection limit and the calibration sensitivity were poorer than those in the equilibrium method. The detection limits were 32-49 pub and 24 pub for the reaction rate and equilibrium methods, respectively In the flow injection analysis, the absorbance was measured before the equilibrium reached and thus resulted in 30% reduction of calibration sensitivity. However, the detection limit was 11 ppb, indicating that the peak-to-peak noise for the blank was remarkably improved. Compared to the manual methods, the optimized experimental condition in a closed reaction system reduced the blank absorbance and the inclusion of ammonia from the atmosphere was prevented. In addition, highly reproducible mixing of sample and reagents and analytical data extracted from continuous recording showed excellent reproducibility.

  • PDF

Measurement of local wall temperature and heat flux using the two-thermocouple method for a heat transfer tube

  • Ahn, Taehwan;Kang, Jinhoon;Jeong, Jae Jun;Yun, Byongjo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1853-1859
    • /
    • 2019
  • The two-thermocouple method was investigated experimentally to evaluate its accuracy for the measurement of local wall temperature and heat flux on a heat transfer tube with an electric heater rod installed in an annulus channel. This work revealed that a thermocouple flush-mounted in a surface groove serves as a good reference method for the accurate measurement of the wall temperature, whereas two thermocouples installed at different depths in the tube wall yield large bias errors in the calculation of local heat flux and wall temperature. These errors result from conductive and convective changes due to the fin effect of the thermocouple sheath. To eliminate the bias errors, we proposed a calibration method based on both the local heat flux and Reynolds number of the cooling water. The calibration method was validated with the measurement of local heat flux and wall temperature against experimental data obtained for single-phase convection and two-phase condensation flows inside the tube. In the manuscript, Section 1 introduces the importance of local heat flux and wall temperature measurement, Section 2 explains the experimental setup, and Section 3 provides the measured data, causes of measurement errors, and the developed calibration method.

Development of Runoff and Sediment Auto-calibration Tool for HRSM4BMP Model (HRSM4BMP 모형 유출/유사 자동 보정 툴 개발)

  • Kum, Donghyuk;Ryu, Jichul;Choi, Jaewan;Kang, Hyunwoo;Jang, Chun Hwa;Shin, Dong Suk;Lee, Jae Kwan;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • Recently, various Best Management Practices (BMPs) have been applied at a field to reduce soil erosion. Hourly Runoff and Sediment Model for Best Management Practices (HRSM4BMP) model could be used to evaluate soil erosion reduction for various agricultural BMPs at fields. Runoff and sediment yield from source areas have to be predicted with greater accuracies to evaluate sediment reduction efficiently with BMPs. To achieve this, the best parameters related with runoff and sediment modules of the HRSM4BMP model should be identified with proper calibration processes. Although manual calibration is often utilized in calibrating runoff and sediment using the HRSM4BMP, objective calibration method would be recommended. The purpose of the study was to develop an automatic calibration tool of the HRSM4BMP model with PARASOL method. This automatic calibration tool was applied to Bangdongri, Chuncheon-si to evaluate its calibration performance. The $R^2$, NSE and RMSE value for runoff estimation were 0.92, 0.92, $0.3m^3$, and for sediment yield estimation were 0.94, 0.94, 0.0027 kg. As shown in this result, automatic calibration tool of HRSM4BMP model would be used to determine the best parameters and can be used to simulate runoff and sediment yield with acceptable accuracies.

Slit-light Laser Range Finding Using Perspective Warping Calibration (원근 와핑 보정을 이용한 선광원 레이저 거리 검출)

  • Ahn, Hyun-Sik
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.3
    • /
    • pp.232-237
    • /
    • 2010
  • In this paper, a slit light laser range finding method using perspective warping calibration is proposed. This approach has an advantage to acquire relatively high accuracy, although the optical system is nonlinear. In the calibration, we detect the calibration points which are marked on the calibration panel and acquire the center position of the slit light laser in the image, which are used for computing the real positions of the slit light by using perspective warping. A calibration file is obtained by integrating the calibration data with the transition of the panel. The range data is acquired by interpolating the center position of the slit light laser to the calibration coordinates. Experimental results show that the proposed method provides the accuracy of 0.08mm error in depth range of 130mm with the low cost optical system.

3-Dimensional Calibration and Performance Evaluation Method for Pupil-labs Mobile Pupil Tracking Device (퓨필랩 모바일 동공 추적 장치를 위한 3차원 캘리브레이션 및 성능 평가 방법)

  • Mun, Ji-Hun;Shin, Dong-Won;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.7 no.2
    • /
    • pp.15-22
    • /
    • 2018
  • Pupil tracking technologies can be used as an efficient information provider means that provides convenience to the user by connecting with a smart device. In this paper, we measure the distance of user gaze point using the pupil tracking device which produced by Pupil-labs, also shows the experimental result with analyzing accuracy and precision. Based on that the pupil gaze point location which tracked by pupil tracking device is compared with object target in terms of error. Since the mobile pupil tracking device is also one kind of camera, we have to perform the calibration before using the device. Not only generally used 2-dimensional calibration, but also 3-dimensional calibration method is explained. To get the improved accuracy of 2-dimensional calibration result, the 3-dimensional calibration set an imaginary plane and executes the calibration in various 3-dimensional spaces. To show the efficiency of 3-dimensional calibration, we analyze the experimental result. It also introduces various using methods and information that can be obtained through the device.

Fabrication and Calibration of pH Sensor Using Suspended CNT Nanosheet (부양형 탄소나노튜브 나노시트를 이용한 pH센서의 제작과 보정)

  • Ryu, Hyobong;Choi, WooSeok;An, Taechang;Heo, Joonseong;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.207-211
    • /
    • 2013
  • In this research, the pH sensor was developed using CNT nanosheet with Nafion coating for the advanced medical sensor such as a blood gas analyzer. The CNT nanosheet was formed by dielectrophoresis and water-meniscus between cantilever-type electrodes. Then, the process of the heat annealing and the Nafion coating was conducted for reducing contact resistance and giving proton selectivity respectively. We measured the response of the pH sensor as the electrolyte-gated CNT-nanosheet field effect transistor. The sensor showed a linear current ratio in a similar range of the normal blood pH. A calibration method for decreasing of the response variation among sensors has also been introduced. Coefficient of variance of the pH sensor was decreased by applying the calibration method. A linear relation between the calibrated response of the sensors and pH variance was also obtained. Finally, the pH sensor with a high resolution was fabricated and we verify the feasibility of the sensor by applying the calibration method.

Study on the Error Compensation in Strain Measurement of Sheet Metal Forming (박판성형 변형률 측정 오차보정에 관한 연구)

  • 한병엽;차지혜;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.270-273
    • /
    • 2003
  • The strain measurement of the panel in the sheet metal forming is essential work which provides experimental data needed to die design, process design, and product inspection. To measure efficiently the complex geometry strain, the 3-dimensional automative strain measurement system, which has high accuracy in theory, but has some 3∼5% errors in practice, is often used. The object of this study is to develop the error compensation technology to eliminate the strain, errors resulted when formed panels are measured using an automated strain measurement system. To achieve the study object, the position error calibration method correcting coordinates of the grid node recognized by a camera using error functions is suggested. Then the position errors were found by calculating the difference in the position of the cube node between real coordinates and measured coordinates in toms of node coordinates and the error calibration equations were derived by regressing the position errors. In order to show the validation of the suggested position error calibration method, finite element analysis and current calibration method was performed for the initial-blankformed.

  • PDF

Color Calibration Method for Improvement of Reliability on Image Analysis of Rock (암석영상분석의 신뢰도 향상을 위한 컬러보정기법 연구)

  • 장윤섭;박형동
    • Tunnel and Underground Space
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Recently, the use of image analysis methods and commercial equipments has been extensively increased in the field of rock engineering. However the problem of errors involved in the image acquisition and subsequent analysis procedure has been frequently neglected. In addition there has been few studies dealing with this problem. So proper color calibration method is needed to be developed for the objectivity and improvement of reliability on image analysis of rock. Color calibration method using standard color rendition chart was adopted on this study. Color calibration and error analysis were carried out for the image acquired from granite rock samples. As a result, comparison among other rock images and improvement of reliability on whole analysis were possible.