• Title/Summary/Keyword: Calibration Factor

Search Result 435, Processing Time 0.029 seconds

GEANT4-based Monte Carlo Simulation of Beam Quality Correction Factors for the Leksell Gamma Knife® PerfexionTM

  • Schaarschmidt, Thomas;Kim, Tae Hoon;Kim, Yong Kyun;Yang, Hye Jeong;Chung, Hyun-Tai
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1814-1820
    • /
    • 2018
  • With the publication of TRS-483 in late 2017 the IAEA has established an international code of practice for reference dosimetry in small and non-standard fields based on a formalism first suggested by Alfonso et al. in 2008. However, data on beam quality correction factors ($k^{f_{msr},f_{ref}}_{Q_{msr},Q_0}$) for the Leksell Gamma $Knife^{(R)}$ $Perfexion^{TM}$ is scarce and what little data is available was obtained under conditions not necessarily in accordance with the IAEA's recommendations. This study constitutes the first systematic attempt to calculate those correction factors by applying the new code of practice to Monte Carlo simulation using the GEANT4 toolkit. $k^{f_{msr},f_{ref}}_{Q_{msr},Q_0}$ values were determined for three common ionization chamber detectors and five different phantom materials, with results indicating that in most phantom materials, all chambers were well suited for reference dosimetry with the Gamma $Knife^{(R)}$. Similarities and differences between the results of this study and previous ones were also analyzed and it was found that the results obtained herein were generally in good agreement with earlier PENELOPE and EGSnrc studies.

Experimental Evaluation of Scattered X-Ray Spectra due to X-Ray Therapeutic and Diagnosis Equipment for Eye Lens Dosimetry of Medical Staff

  • Kowatari, Munehiko;Nagamoto, Keisuke;Nakagami, Koich;Tanimura, Yoshihiko;Moritake, Takashi;Kunugita, Naoki
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • Background: For proper monitoring of the eye lens dose, an appropriate calibration factor of a dosimeter and information about the mean energies of X-rays are indispensable. The scattered X-ray energy spectra should be well characterized in medical practices where eye lenses of medical staffs might be high. Materials and Methods: Scattered X-ray energy spectra were experimentally derived for three different types of X-ray diagnostic and therapeutic equipment, i.e., the computed tomography (CT) scan, the angiography and the fluoroscopy. A commercially available CdZnTe (CZT) spectrometer with a lead collimator was employed for the measurement of scattered X-rays, which was performed in the usual manner. Results and Discussion: From the obtained energy spectra, the mean energies of the scattered X-rays lied between 40 and 60 keV. This also agreed with that obtained by the conventional half value layer method. Conclusion: The scattered X-rays to which medical workers may be exposed in the region around the eyes were characterized by means of spectrometry. The obtained mean energies of the scattered X-rays were found to match the flat region of the dosimeter response.

Reliability study of CFRP externally bonded concrete beams designed by FIB bulletin 14 considering corrosion effects

  • Dehghani, Hamzeh
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.191-198
    • /
    • 2022
  • FIB is introduced as the sole guideline for the design purpose that results in a practical relationship for the torsional capacity of concrete beams strengthened with carbon fiber-reinforced polymer (CFRP). This study applies first-order reliability method to assess the reliability evaluation of the torsional capacity of CFRP-strengthened beams on the basis of FIB guidelines. In terms of steel reinforcement losses, this study applies a corrosion model to investigate the ceaseless deterioration of the existing structure. Hence, the average of reliability indices varies between 2.68 and 2.80, indicating the reliability viewpoint of the design methodologies. The average values are somehow low compared to the target values of reliability (3.0 or 3.5) applied in the calibration stage of the FIB guideline. In this way, the partial safety factors may change in the forthcoming guideline revisions. For this aim, the reliability of strengthening ratio was applied to assess the variation in the average value of the reliability index with different partial safety factors. The performance of parametric study for the factor proved that minimum values of 1.60 and 2.32 are required for target values of reliability (3.0 and 3.5), respectively.

Improvement of Wave Height Mid-term Forecast for Maintenance Activities in Southwest Offshore Wind Farm (서남권 해상풍력단지 유지보수 활동을 위한 중기 파고 예보 개선)

  • Ji-Young Kim;Ho-Yeop Lee;In-Seon Suh;Da-Jeong Park;Keum-Seok Kang
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.25-33
    • /
    • 2023
  • In order to secure the safety of increasing offshore activities such as offshore wind farm maintenance and fishing, IMPACT, a mid-term marine weather forecasting system, was established by predicting marine weather up to 7 days in advance. Forecast data from the Korea Hydrographic and Oceanographic Agency (KHOA), which provides the most reliable marine meteorological service in Korea, was used, but wind speed and wave height forecast errors increased as the leading forecast period increased, so improvement of the accuracy of the model results was needed. The Model Output Statistics (MOS) method, a post-correction method using statistical machine learning, was applied to improve the prediction accuracy of wave height, which is an important factor in forecasting the risk of marine activities. Compared with the observed data, the wave height prediction results by the model before correction for 6 to 7 days ahead showed an RMSE of 0.692 m and R of 0.591, and there was a tendency to underestimate high waves. After correction with the MOS technique, RMSE was 0.554 m and R was 0.732, confirming that accuracy was significantly improved.

The Evaluation of Quantitative Accuracy According to Detection Distance in SPECT/CT Applied to Collimator Detector Response(CDR) Recovery (Collimator Detector Response(CDR) 회복이 적용된 SPECT/CT에서 검출거리에 따른 정량적 정확성 평가)

  • Kim, Ji-Hyeon;Son, Hyeon-Soo;Lee, Juyoung;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.55-64
    • /
    • 2017
  • Purpose Recently, with the spread of SPECT/CT, various image correction methods can be applied quickly and accurately, which enabled us to expect quantitative accuracy as well as image quality improvement. Among them, the Collimator Detector Response(CDR) recovery is a correction method aiming at resolution recovery by compensating the blurring effect generated from the distance between the detector and the object. The purpose of this study is to find out quantitative change depending on the change in detection distance in SPECT/CT images with CDR recovery applied. Materials and Methods In order to find out the error of acquisition count depending on the change of detection distance, we set the detection distance according to the obit type as X, Y axis radius 30cm for circular, X, Y axis radius 21cm, 10cm for non-circular and non-circular auto(=auto body contouring, ABC_spacing limit 1cm) and applied reconstruction methods by dividing them into Astonish(3D-OSEM with CDR recovery) and OSEM(w/o CDR recovery) to find out the difference in activity recovery depending on the use of CDR recovery. At this time, attenuation correction, scatter correction, and decay correction were applied to all images. For the quantitative evaluation, calibration scan(cylindrical phantom, $^{99m}TcO_4$ 123.3 MBq, water 9293 ml) was obtained for the purpose of calculating the calibration factor(CF). For the phantom scan, a 50 cc syringe was filled with 31 ml of water and a phantom image was obtained by setting $^{99m}TcO_4$ 123.3 MBq. We set the VOI(volume of interest) in the entire volume of the syringe in the phantom image to measure total counts for each condition and obtained the error of the measured value against true value set by setting CF to check the quantitative accuracy according to the correction. Results The calculated CF was 154.28 (Bq/ml/cps/ml) and the measured values against true values in each conditional image were analyzed to be circular 87.5%, non-circular 90.1%, ABC 91.3% and circular 93.6%, non-circular 93.6%, ABC 93.9% in OSEM and Astonish, respectively. The closer the detection distance, the higher the accuracy of OSEM, and Astonish showed almost similar values regardless of distance. The error was the largest in the OSEM circular(-13.5%) and the smallest in the Astonish ABC(-6.1%). Conclusion SPECT/CT images showed that when the distance compensation is made through the application of CDR recovery, the detection distance shows almost the same quantitative accuracy as the proximity detection even under the distant condition, and accurate correction is possible without being affected by the change in detection distance.

  • PDF

Comparison of Dosimetry Protocols in High Energy Electron Beams (고에너지 전자선에 대한 표준측정법간의 비교)

  • 박성용;서태석;김회남;신동오;지영훈;군수일;이길동;추성실;최보영
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.267-276
    • /
    • 1998
  • Any detector inserted into a phantom should have such a geometry that it caused as small as possible perturbation of the electron fluence. Plane parallel chambers meet this requirement better than other chambers of configurations. IAEA protocol recommends the use of plane parallel chambers for this reason. However, the cylindrical chambers are widely used for convenient. The purpose of this study is to evaluate the absorbed dose due to the differences of four different dosimetry protocols such as IAEA protocol using cylindrical chamber, TG 21 protocol using cylindrical chamber, Markus protocol using plane parallel chamber, and TG 39 report for the calibration of plane parallel chamber in electron beams. Depth-ionization measurements for the electron beams of nominal energy 6, 9, 12, 15, and 18 MeV from Siemens accelerator with a 10$\times$10 cm$^2$ field size were made using a radiation field analyser with 0.125 cc ion chamber. Dosimetric measurements by IAEA and TG 21 protocol were made with a farmer type ionization chamber in solid water for each electron energy, respectively. Dosimetric measurements by Markus protocol were made with a plane parallel ionization chamber in solid water for each electron energy, respectively. The cavity-gas calibration factor for the plane parallel chamber was obtained with the use of 18 MeV electron beam as guided by TG 39 report. Dosimetric measurements by TG 39 were performed with a plane parallel ionization chamber in solid water for each electron energy, respectively. For all the energies and protocols, measurements were made along the central axis of the distance of 100 cm (SSD = 100 cm) with 10$\times$10 cm$^2$ field size at the depth of d$_{max}$ for each electron beam, respectively. In the case of 18 MeV, the discrepancy of 0.9 % between IAEA and TG 21 was found and the two protocols were agreed within 0.7 % for other energies. In the case of 18 MeV and 6 MeV, the discrepancies of $\pm$ 0.8 % between Markus and TG 39 was found, respectively and the two protocols were agreed within 0.5 % for other energies. Since the discrepancy of 1.6 % between cylindrical and plane parallel chamber was found for 18 MeV, it is suggested to get the calibration factor using other method as guided. by TG 39.9.

  • PDF

Estimation and assessment of baseflow at an ungauged watershed according to landuse change (토지이용변화에 따른 미계측 유역의 기저유출량 산정 및 평가)

  • Lee, Ji Min;Shin, Yongchun;Park, Youn Shik;Kum, Donghyuk;Lim, Kyoung Jae;Lee, Seung Oh;Kim, Hungsoo;Jung, Younghun
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.303-318
    • /
    • 2014
  • Baseflow gives a significant contribution to stream function in the regions where climatic characteristics are seasonally distinct. In this regard, variable baseflow can make it difficult to maintain a stable water supply, as well as causing disruption to the stream ecosystem. Changes in land use can affect both the direct flow and baseflow of a stream, and consequently, most other components of the hydrologic cycle. Baseflow estimation depends on the observed streamflow in gauge watersheds, but accurate predictions of streamflow through modeling can be useful in determining baseflow data for ungauged watersheds. Accordingly, the objectives of this study are to 1) improve predictions of SWAT by applying the alpha factor estimated using RECESS for calibration; 2) estimate baseflow in an ungauged watershed using the WHAT system; and 3) evaluate the effects of changes in land use on baseflow characteristics. These objectives were implemented in the Gapcheon watershed, as an ungauged watershed in South Korea. The results show that the alpha factor estimated using RECESS in SWAT calibration improves the prediction for streamflow, and, in particular, recessions in the baseflow. Also, the changes in land use in the Gapcheon watershed leads to no significant difference in annual baseflow between comparable periods, regardless of precipitation, but does lead to differences in the seasonal characteristics observed for the temporal distribution of baseflow. Therefore, the Guem River, into which the stream from the Gapcheon watershed flows, requires strategic seasonal variability predictions of baseflow due to changes in land use within the region.

Evaluation of Shear Design Provisions for Reinforced Concrete Beams and Prestressed Concrete Beams (철근콘크리트 보와 프리스트레스트 콘크리트 보의 전단설계기준에 대한 고찰)

  • Kim Kang-Su;Kim Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.717-726
    • /
    • 2005
  • Shear test data have been extracted from previous experimental research and compiled into a database that may be the largest ever made. In this paper, the shear database (SDB) was used for evaluating shear design provisions for both reinforced concrete (RC) beams and prestressd concrete (PSC) beams. A discussion on the use of the results of this evaluation related to calibration and strength reduction factor for the shear design provisions was also provided. It was observed that the shear design provisions did not provide good predictions for RC members and gave very poor predictions especially for RC members without shear reinforcement. On the other hand, the limit on shear strength contributed by transverse reinforcement was observed to be lower than necessary. The shear design provisions gave very unconservative results for the large RC members (d>700mm) without shear reinforcement having light amount of longitudinal reinforcement $(\rho_w<1.0\%)$. However, for PSC members the shear design provisions gave a good estimation of ultimate shear strength with a reasonable margin of safety. Despite of a large difference of accuracy in prediction of shear strength for RC members and PSC members, the shear design provisions used a same shear strength reduction factor for these members. As a result, the shear design provisions did not provide a uniform factor of safety against shear failure for different types of members.

Chamber-to-chamber Variations in the Same Type of a Cylindrical Chamber for the Measurements of Absorbed Doses (흡수선량 측정 시 동종 원통형 이온함에서 이온함 간 변화)

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Kim, Hyeog-Ju;Lim, Chun-Il;Shin, Dong-Oh;Choi, Jin-Ho
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.120-125
    • /
    • 2010
  • For the measurements of an absorbed dose using the standard dosimetry based on an absorbed dose to water the variety of factors, whether big, small, or tiny, may influence the accuracy of dosimetry. The beam quality correction factor ${\kappa}_{Q,Q_0}$ of an ionization chamber might also be one of them. The cylindrical type of ionization chamber, the PTW30013 chamber, was chosen for this work and 9 chambers of the same type were collected from several institutes where the chamber types are used for the reference dosimetry. They were calibrated from the domestic Secondary Standard Dosimetry Laboratory with the same electrometer and cable. These calibrated chambers were used to measure absorbed doses to water in the reference condition for the photon beam of 6 MV and 10 MV and the electron beam of 12 MeV from Siemens ONCOR. The biggest difference among chambers amounts to 2.4% for the 6 MV photon beam, 0.8% for the 10 MV photon beam, and 2.4% for the 12 MeV electron beam. The big deviation in the photon of 6 MV demonstrates that if there had been no problems with the process of measurements application of the same ${\kappa}_{Q,Q_0}$ to the chambers used in this study might have influenced the deviation in the photon 6 MV and that how important an external audit is.

Utility of the APACHE II Score as a Neurologic Prognostic Factor for Glufosinate Intoxicated Patients (Glufosinate 중독 환자의 신경학적 예후 인자로서 APACHE II Score의 유용성)

  • Yoo, Dae Han;Lee, Jung Won;Choi, Jae Hyung;Jeong, Dong Kil;Lee, Dong Wook;Lee, Young Joo;Cho, Young Shin;Park, Joon Bum;Chung, Hae Jin;Moon, Hyung Jun
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.14 no.2
    • /
    • pp.107-114
    • /
    • 2016
  • Purpose: The incidence of glufosinate poisoning is gradually increasing, and it can be fatal if severe poisoning occurs. However, factors useful for predicting the post-discharge neurological prognosis of patients who have ingested glufosinate have yet to be identified. Our objective was to evaluate the utility of the acute physiology and chronic health evaluation (APACHE) II score measured in the emergency department for predicting the neurological prognosis. Methods: From April 2012 to August 2014, we conducted a retrospective study of patients who had ingested glufosinate. The outcome of the patients at discharge was defined by the Cerebral Performance Category Score (CPC). The patients were divided into a good prognosis group (CPC 1, 2) and a poor prognosis group (CPC 3, 4, 5), after which the APACHE II scores were compared. The Hosmer-Lemeshow test and the area under the receiver operating characteristic (ROC) curve from patients determined calibration and discrimination. Results: A total of 76 patients were enrolled (good prognosis group: 67 vs poor prognosis group: 9). The cut-off value for the APACHE II score was 12 and the area under the curve value was 0.891. The Hosmer and Lemeshow C statistic x2 was 7.414 (p=0.387), indicating good calibration for APACHE II. Conclusion: The APACHE II score is useful at predicting the neurological prognosis of patients who have ingested glufosinate.