• 제목/요약/키워드: Calculation grid size

검색결과 55건 처리시간 0.026초

다중 GPU기반 홀로그램 생성을 위한 병렬처리 성능 최적화 기법 (An Optimization Method for Hologram Generation on Multiple GPU-based Parallel Processing)

  • 국중진
    • 스마트미디어저널
    • /
    • 제8권2호
    • /
    • pp.9-15
    • /
    • 2019
  • 홀로그램의 생성을 위한 연산은 포인트 클라우드의 규모에 따라 연산량이 기하급수적으로 증가하기 때문에 최근에는 다중의 GPU를 기반으로 CUDA 또는 OpenCL 라이브러리를 활용한 병렬처리가 이루어지고 있다. GPU기반의 병렬처리를 위한 CUDA 커널은 GPU의 코어 개수와 메모리 크기를 고려하여 쓰레드(thread), 블록(block), 그리드(grid)를 구성해야 하며, 다중 GPU 환경인 경우 GPU의 개수에 따른 그리드, 블록, 또는 쓰레드 단위의 분산처리가 필요하다. 본 논문에서는 CGH 생성에 대한 성능평가를 위해 포인트 클라우드의 포인트 개수를 10~1,000,000개 범위에서 점진적으로 증가시키면서 CPU, 단일 GPU, 다중 GPU 환경에서 연산 속도를 비교해 보았으며, 다중 GPU 환경에서 CGH(Computer Generated Hologram) 생성 연산을 가속화하기 위한 CUDA 기반의 병렬처리 과정에서 요구되는 메모리 구조 설계와 연산 방법을 제안한다.

통합 재해지도 작성 기법 개발(I) : 그리드 기반 모형의 확장 및 검증 (Development of integrated disaster mapping method (I) : expansion and verification of grid-based model)

  • 박준형;한건연;김병현
    • 한국수자원학회논문집
    • /
    • 제55권1호
    • /
    • pp.71-84
    • /
    • 2022
  • 본 연구의 목적은 간단한 입력자료로 정확한 홍수해석을 수행할 수 있는 2차원 침수모형을 개발하는데 있다. 현재 침수예상도 작성을 위해 사용되는 2차원 침수해석 모형들은 복잡한 입력자료 및 격자 생성 도구를 필요로 한다. 이는 때때로 침수 모델링을 위해 많은 시간과 노력이 요구되며, 상황에 따라서는 입력자료의 구축에 어려움이 있을 수도 있다. 이러한 단점들을 보완하기 위해, 본 연구에서는 정확한 지형자료를 간단한 입력자료로 반영하여, 정확하고 신속한 침수해석을 도출할 수 있는 그리드 기반 모형을 개발하였다. 기존의 2×2 Sub-grid 모형을 5×5 Sub-grid까지 확장하여 계산의 효율성을 개선하였다. 모형의 정확성 및 적용성을 검토하기 위해, 태풍 루사로 인해 내수침수와 외수범람이 동시에 발생한 감천유역에 적용하였다. 사용자의 선택에 따른 효율적인 홍수분석을 위해, 격자 크기와 Sub-grid 개수에 따른 홍수파 전파양상, 침수해석의 정확성, 모형의 수행시간을 조사하였다. 개발된 모형은 정확한 침수해석 결과를 보여주는 침수예상도에서부터 대략적인 침수여부만을 보여주는 홍수위험도까지 다양한 상황에 맞는 침수해석 결과를 제시할 수 있으며, 재해지도 작성에도 활용성이 높을 것으로 기대된다.

수중 고온 단일 기포의 열전달 해석 연구 (A Study on the Heat Transfer Analysis of High-Temperature Single Bubble in Water)

  • 윤석태
    • 한국산업정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.117-123
    • /
    • 2024
  • 수중에서 발생한 기포는 주변 유체의 밀도와 압력 차이에 의해 상승하는 부력을 받는다. 또한 주변 유체와의 점성, 표면장력, 상승 속도 그리고 크기 차이에 따라 기포의 거동, 형상, 열교환 과정 등이 달라진다. 본 연구에서는 원기둥 수조 내 상승하는 고온 단일 기포의 속도 그리고 열전달 해석에 관한 연구를 수행하였다. 이를 위해 이론적 식을 통해 기포의 속도 그리고 온도 등을 계산하여 수치 해석 결과와 비교하기 위한 자료를 설정하였다. 그리고 상용 프로그램으로 수치 해석을 수행하였으며, 격자의 변화에 따른 수치 해석 결과의 안정성을 격자 수렴성 지수 계산을 통해 확인하였다. 수치 해석 결과 단일 기포의 상승 속도와 온도는 최소 격자의 크기가 기포 지름의 1/160이 될 때 수렴성을 보였으며, 온도 감소는 0.05초 이내에 주변 유체와 동일한 수준으로 감소하는 것을 확인하였다.

An Optimization Algorithm with Novel Flexible Grid: Applications to Parameter Decision in LS-SVM

  • Gao, Weishang;Shao, Cheng;Gao, Qin
    • Journal of Computing Science and Engineering
    • /
    • 제9권2호
    • /
    • pp.39-50
    • /
    • 2015
  • Genetic algorithm (GA) and particle swarm optimization (PSO) are two excellent approaches to multimodal optimization problems. However, slow convergence or premature convergence readily occurs because of inappropriate and inflexible evolution. In this paper, a novel optimization algorithm with a flexible grid optimization (FGO) is suggested to provide adaptive trade-off between exploration and exploitation according to the specific objective function. Meanwhile, a uniform agents array with adaptive scale is distributed on the gird to speed up the calculation. In addition, a dominance centroid and a fitness center are proposed to efficiently determine the potential guides when the population size varies dynamically. Two types of subregion division strategies are designed to enhance evolutionary diversity and convergence, respectively. By examining the performance on four benchmark functions, FGO is found to be competitive with or even superior to several other popular algorithms in terms of both effectiveness and efficiency, tending to reach the global optimum earlier. Moreover, FGO is evaluated by applying it to a parameter decision in a least squares support vector machine (LS-SVM) to verify its practical competence.

CFD에 의한 2차원 Sharp Plane의 각도변화에 따른 유동특성에 관한 연구 (A CFD Study on Flow Characteristics with Inclined Angles of Two-Dimensional Sharp Plane)

  • 금종윤;박성호;박주헌;송근택;모장오;이영호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.40-45
    • /
    • 2001
  • Recently, the use of numerical simulation has been increased rapidly because of the development of high performance computer systems. The present study is aimed to investigate flow characteristics of a two-dimensional sharp plane. Unsteady calculation by FDM(Finite Difference Method) based upon SOLA scheme which was performed at $Re=2{\times}10^4$in viscous incompressible flow within a finite domain on the irregular grid formation. Total numbers of irregular grids are $8{\times}10^4$. The minimum grid size is 1/100 of the plane length L which is the representative length. The inclined angles of every objects are $15^{\circ}, \;30^{\circ}\;and\; 45^{\circ}.$ And, the edge angle of the plane is $30^{\circ}.$ This study discussed the flow characteristics in term of the turbulent intensity, vorticity and frequency analysis. Developed flows show that the periodic Karman vortices occur at the back of the plane.

  • PDF

GIS-GPS 기술을 이용한 저수지 수심측정 무인보트의 자율항법시스템 개발 (Development of Automatic Cruise System of Unmanned Boat for Surveying Water Depth in Reservoir Using GIS-GPS Technologies)

  • 김대식;김진택;표기형;이진범
    • 한국농공학회논문집
    • /
    • 제52권6호
    • /
    • pp.9-17
    • /
    • 2010
  • In this paper, an automatic cruise system of unmanned boat was developed for surveying water depth in reservoir using GIS (geographic information system)-GPS (global positioning system) Technologies. the automatic cruise system consisted of an automatic path generation program (APGP) and an automatic boat control program (ABCP). A grid processing method with $3{\times}3$ roving window in GIS function was used to develop the APGP. For development of the ABCP, GPS and its coordinate calculation technique were introduced. The developed system was tested to verify the applicability for a sample reservoir, Misan reservoir located on Ansan city of Kyunggi province. From the test results, this study found the APGP generated cruise path automatically according to input condition on grid size of 5 m, 10 m, and 20 m, as well as, the ABCP also tracked well the cruise paths with high position accuracy. Another verification result on surveying time for 20 ha of water area also showed that the new system could survey water depth of reservoir quickly, including very high quality of spatial resolution.

A Flow Analysis of Small Craft by Using CFD

  • Park, Ji-Yong;Jeong, Jin-Hee;Hwang, Tea-Wook;Lee, Sol-Ah;Kim, Kyung-Sung
    • Journal of Multimedia Information System
    • /
    • 제7권4호
    • /
    • pp.269-276
    • /
    • 2020
  • The small craft including jet-board for leisure are commonly smaller than the general commercial vessels. For the floating vessel, the motion analysis is significantly important component to design the shape. It is, however, hardly predicting its behavior by using conventional boundary element method due to violating small amplitude assumption for potential theory. The computational fluid dynamics method can afford to simulate such small craft, but its grid system was not able to calculate motion, because movable body disturbs the grid system by confliction. The dynamics fluid body interaction model with over-set mesh system can be dealt with movable floating body under irregular ocean wave. In this study, several cases were considered to reveal that DFBI is essential method to predict floating body motion. The single phase simulate was conducted to establish the shape perfection, and then the validated vessel was simulated with ocean waves weather DFBI option on or off. Through the comparison, the results between the cases of DFBI on and off shows significantly difference. It was claimed that the DFBI was necessary not only to calculation body motion, but also to predict accurate drag and lift force on the floating body for small size craft.

Evaluation of soil spatial variability by micro-structure simulation

  • Fei, Suozhu;Tan, Xiaohui;Wang, Xue;Du, Linfeng;Sun, Zhihao
    • Geomechanics and Engineering
    • /
    • 제17권6호
    • /
    • pp.565-572
    • /
    • 2019
  • Spatial variability is an inherent characteristic of soil, and auto-correlation length (ACL) is a very important parameter in the reliability or probabilistic analyses of geotechnical engineering that consider the spatial variability of soils. Current methods for estimating the ACL need a large amount of laboratory or in-situ experiments, which is a great obstacle to the application of random field theory to geotechnical reliability analysis and design. To estimate the ACL reasonably and efficiently, we propose a micro-structure based numerical simulation method. The quartet structure generation set algorithm is used to generate stochastic numerical micro-structure of soils, and scanning electron microscope test of soil samples combined with digital image processing technique is adopted to obtain parameters needed in the QSGS algorithm. Then, 2-point correlation function is adopted to calculate the ACL based on the generated numerical micro-structure of soils. Results of a case study shows that the ACL can be estimated efficiently using the proposed method. Sensitivity analysis demonstrates that the ACL will become stable with the increase of mesh density and model size. A model size of $300{\times}300$ with a grid size of $1{\times}1$ is suitable for the calculation of the ACL of clayey soils.

라그란지안 입자확산모델개발(농도 계산방법의 검토) (A Development of Lagrangian Particle Dispersion Model (Focusing on Calculation Methods of the Concentration Profile))

  • 구윤서
    • 한국대기환경학회지
    • /
    • 제15권6호
    • /
    • pp.757-765
    • /
    • 1999
  • Lagrangian particle dispersion model(LPDM) is an effective tool to calculate the dispersion from a point source since it dose not induce numerical diffusion errors in solving the pollutant dispersion equation. Fictitious particles are released to the atmosphere from the emission source and they are then transported by the mean velocity and diffused by the turbulent eddy motion in the LPDM. The concentration distribution from the dispersed particles in the calculation domain are finally estimated by applying a particle count method or a Gaussian kernel method. The two methods for calculating concentration profiles were compared each other and tested against the analytic solution and the tracer experiment to find the strength and weakness of each method and to choose computationally time saving method for the LPDM. The calculated concentrations from the particle count method was heavily dependent on the number of the particles released at the emission source. It requires lots fo particle emission to reach the converged concentration field. And resulting concentrations were also dependent on the size of numerical grid. The concentration field by the Gaussian kernel method, however, converged with a low particle emission rate at the source and was in good agreement with the analytic solution and the tracer experiment. The results showed that Gaussian kernel method was more effective method to calculate the concentrations in the LPDM.

  • PDF

복합형 유역모델 STREAM의 개발(I): 모델 구조 및 이론 (Development of a Hybrid Watershed Model STREAM: Model Structures and Theories)

  • 조홍래;정의상;구본경
    • 한국물환경학회지
    • /
    • 제31권5호
    • /
    • pp.491-506
    • /
    • 2015
  • Distributed models represent watersheds using a network of numerous, uniform calculation units to provide spatially detailed and consistent evaluations across the watershed. However, these models have a disadvantage in general requiring a high computing cost. Semi-distributed models, on the other hand, delineate watersheds using a simplified network of non-uniform calculation units requiring a much lower computing cost than distributed models. Employing a simplified network of non-uniform units, however, semi-distributed models cannot but have limitations in spatially-consistent simulations of hydrogeochemical processes and are often not favoured for such a task as identifying critical source areas within a watershed. Aiming to overcome these shortcomings of both groups of models, a hybrid watershed model STREAM (Spatio-Temporal River-basin Ecohydrology Analysis Model) was developed in this study. Like a distributed model, STREAM divides a watershed into square grid cells of a same size each of which may have a different set of hydrogeochemical parameters reflecting the spatial heterogeneity. Like many semi-distributed models, STREAM groups individual cells of similar hydrogeochemical properties into representative cells for which real computations of the model are carried out. With this hybrid structure, STREAM requires a relatively small computational cost although it still keeps the critical advantage of distributed models.