• Title/Summary/Keyword: Calcium sensor

Search Result 21, Processing Time 0.025 seconds

Diagnostic Calculation of Trace Calcium Ions in Food Using a DNA doped Sensor

  • Yang, Young-Kyun;Ly, Suw-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.197-203
    • /
    • 2013
  • The diagnostic assay of calcium ion was sought using a modified sensor with square-wave stripping voltammetry (SWSV) and cyclic voltammetry (CV). In this study, simple graphite pencil was used as working, reference, and auxiliary electrodes. By coating the working electrodes with DNA, their sensitivity was very much improved, and good results were yielded. Moreover, clean seawater was used as an electrolyte solution instead of acid and base electrolytes to lessen the expenses involved in the experiment. The analytical optimum conditions were also examined. These conditions were attained at the low detection limit of $0.6ugL^1$. After that, the results were applied to drinking water of milk contain.

A Highly Selective and Sensitive Calcium(II)-Selective PVC Membrane Based on Dimethyl 1-(4-Nitrobenzoyl)-8-oxo-2,8-dihydro-1H-pyrazolo[5,1-a]isoindole-2,3-dicarboxylate as a Novel Ionophore

  • Zamani, Hassan Ali;Abedini-Torghabeh, Javad;Ganjali, Mohammad Reza
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.835-840
    • /
    • 2006
  • Dimethyl 1-(4-nitrobenzoyl)-8-oxo-2,8-dihydro-1H-pyrazolo[5,1-a]isoindole-2,3-dicarboxylate has been used as an ionophore and o-nitrophenyloctyl ether as a plasticizer in order to develop a poly(vinyl chloride)-based membrane electrode for calcium ion detection. The sensors exhibit significantly enhanced response towards calcium(II) ions over the concentration range $8.0{\times}10^{-7}\;1.0{\times}10^{-1}$ M at pH 3.0-11 with a lower detection limit of $5.0 {\times}10^{-7}$ M. The sensors display Nernstian slope of 29.5 ${\pm}$ 0.5 mV per decade for Ca(II) ions. Effects of plasticizers, lipophilic salts and various foreign common ions are tested. It has a fast response time within 10 s over the entire concentration range and can be used for at least 2 months without any divergence in potentials. The proposed electrode revealed good selectivity and response for $Ca^{2+}$ over a wide variety of other metal ions. The selectivity of the sensor is comparable with those reported for other such electrodes. The proposed sensor was successfully applied as an indicator electrode for the potentiometric titration of a Ca(II) solution, with EDTA.

Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors

  • Oh, Jihae;Lee, Chiwoo;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.4
    • /
    • pp.237-249
    • /
    • 2019
  • Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.

Effect of Surfactants on the Electrochemical Performance of Cation-Selective Membrane Electrodes

  • Oh, Hyun-Joon;Cha, Geun-Sig;Nam, Hak-hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2003
  • We examined the effect of polyether-type nonionic surfactants (Brij 35, Triton X-100, Tween 20 and Tween 80) on the potentiometric properties of sodium-, potassium- and calcium-selective membranes which are prepared with widely used ionophores and four kinds of polymer matrices [poly(vinyl chloride) (PVC), polyurethane (PU), PVC/PU blend, and silicone rubber (SR)]. It was found that the PVC-based membranes, which provide the best performance among all other matrix-based membranes in the absence of nonionic surfactants, exhibited larger change in their potentiometric properties when nonionic surfactants are added to the sample solution. On the other hand, the sodium-selective SR-based membrane with calix[4]arene, potassium-selective PVC/PU- or SR-based membrane with valinomycin, and the calcium-selective SR-based membrane with ETH 1001 provide almost identical analytical performance in the presence and absence of Tween 20 or Tween 80 surfactants. The origin of nonionic surfactants effect was also investigated by interpreting the experimental results obtained with various matrices and ionophores. The results suggest that the nonionic surfactant extracted into the membrane phase unselectively form complexes with the primary and interfering ions, resulting in increased background potential and lower binding ability for the ionophore. Such effects should result in deteriorated detection limits, reduced response slopes and lower selectivity for the primary ions.

Determination of $Ca^{2+}$ by Fiber Optic Fluorosensor Based on the Conformational Change of the Protein Calmodulin (Calmodulin 단백질의 형태변화를 이용한 광섬유 형광센서에 의한 $Ca^{2+}$의 정량)

  • Ri, Chang-Seop;Yang, Seung Tae
    • Analytical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.221-227
    • /
    • 1995
  • The fiber optic fluorosensor that shows a specific selectivity for calcium ion is studied. This sensor employs protein Calmodulin(CaM) which forms a fluorescent chelate with $Ca^{2+}$. A dialysis membrane is used to entrap a fluorescein isothiocyanate-labeled CaM solution at the common end of a bifurcated fiber optic bundle. The sensing mechanism of this sensor is based on the shifts in the fluorescence spectrum of metal-calmodulin complexes which FCaM forms a chelate with $Ca^{2+}$. Upon binding with $Ca^{2+}$, CaM undergoes a conformational change which induces a change in the fluorescence of FCaM. This change in fluorescence signal which is measured by photomultiflier tube is related to the concentration of $Ca^{2+}$ for calibration curve. Detection limit for $Ca^{2+}$ and the interference effects by $Mg^{2+}$, $Eu^{3+}$ and $La^{3+}$ for this sensor are studied. Response time and life time for this fluorosensor are also investigated.

  • PDF

Synthesis of a New Hexadendates Schiff's Base and Its Application in the Fabrication of a Highly Selective Mercury(II) Sensor

  • Ganjali, M.R.;Norouzi, P.;Alizadeh, T.;Salavati-Niasari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.68-72
    • /
    • 2007
  • A new PVC membrane potentiometric sensor that is highly selective to Hg2+ ions was prepared, using bis(2-hydroxybenzophenone) butane-2,3-dihydrazone (HBBD) as an excellent hexadendates neutral carrier. The sensor works satisfactorily in the concentration range of 1.0 × 10-6 to 1.0 × 10-1 mol L-1 (detection limit 4 × 10-7 mol L-1) with a Nernstian slope of 29.7 mV per decade. This electrode showed a fast response time (~8 s) and was used for at least 12 weeks without any divergence. The sensor exhibits good Hg2+ selectivity for a broad range of common alkali, alkaline earth, transition and heavy metal ions (lithium, sodium, potassium, magnesium, calcium, copper, nickel, cobalt, zinc, cadmium, lead and lanthanum). The electrode response is pH independent in the range of 1.5-4.0. Furthermore, the developed sensor was successfully used as an indicator electrode in the potentiometric titration of mercury ions with potassium iodide and the direct determination of mercury in some binary and ternary mixtures.

Development of a Solid State Ion Sensor Module for Analysis of Hydroponic Nutrients (수경재배용 배양액의 이온성분 분석을 위한 고체형 센서 모듈 개발)

  • Kim, G.;Lee, S.B.;Chang, Y.C.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.5
    • /
    • pp.348-353
    • /
    • 2007
  • A solid state ion sensor module has been developed and evaluated for hydroponic nutrients analysis. The sensor module consisted of five ion-selective electrodes (ISE) fabricated by screen-printing technology. The electrochemical responses of ion sensors for nitrate, ammonium, potassium, calcium, and pH were measured with specially designed 7-channel low voltage signal transducers. The analytical characteristics of the sensors were comparable with those of conventional ISE sensors. The solid state ion sensors exhibit linear relationships over five concentration decades. Detection limit of the sensors were $5.6{\times}10^{-5}{\sim}1.6{\times}10^{-7}M$ depends on ions. Performance test results showed that relative errors of measured ion concentrations were less than 5% for $NO_3{^-},\;K^+,\;Ca^{2+}$ ion, and pH. The concentration of $NO_3{^-},\;NH_4{^+},\;K^+,\;Ca^{2+}$, and pH ion in standard solution and nutrient solutions could be determined by direct potentiometric measurements without any conditioning before measurements.

Development of Methane Gas Sensor by Various Powder Preparation Methods

  • Min, Bong-Ki;Park, Soon-Don;Lee, Sang-Ki
    • The Korean Journal of Ceramics
    • /
    • v.5 no.2
    • /
    • pp.125-130
    • /
    • 1999
  • After $SnO_2$ fine powder by precipitation method, Ca as crystallization inhibitor and Pd as catalyst were added to $SnO_2$ raw material by various methods. Thick film device was fabricated on the alumina substrate by mixing ethylene glycol and such mixed powders. The sensing characteristics of the device for methane gas were investigated. The most excellent gas sensing property was shown by the thick film device fabricated by Method 3 in which Ca and Pd doped $SnO_2$ powder is prepared by mixing $SnO_2$ powder, 0.1 wt% Ca acetate and 1 wt% $PdCl_2$ in deionized water and by calcining the mixture, after $Sn(OH)_4$ is dried at $110^{\circ}C$ for 36h. The sensitivity of the sensor fabricated with $SnO_2$-0.1 wt%Ca acetate-1wt%$PdCl_2$ powder heat-treated at $700^{\circ}C$ for 1h was about 86% for 5,000 ppm methane in air at $350^{\circ}C$ of the operating temperature. Response time and recovery were also excellent.

  • PDF

Preparation of a New $K^{+}-ISFET$ Modified with 4'-Aminobenzo-15-crown-5 and Its Response Characteristics (4'-Aminobenzo-15-crown-5를 수식한 새로운 $K^{+}-ISFET$의 제조와 감응특성)

  • Lee, H.L.;Yun, J.H.;Yang, S.T.;Jung, D.S.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.85-92
    • /
    • 1992
  • A new potassium sensitive field effect transistor modified with 4'-aminobenzo-15-crown-5 was prepared and its response characteristics were evaluated. The response slope of $K^{+}-ISFET$ for pH was 30.0 mV/decade and the response time was mere than 3 minutes. And the response slope and time of the $K^{+}-ISFET$ for potassium ion as $19.5{\pm}0.2{\;}mV/decade$ and about 3 minutes, respectively. The linear response range of the sensor for potassium ion was $2.0{\times}10^{-4}{\sim}1.0{\times}10^{-2}M$. The selectivity coefficients of the $K^{+}-ISFET$ for the alkali and alkaline earth metal ions were also evaluated. Sodium, ammonium and calcium ions exhibited relatively significant interference. The long term stability of the sensor was remarkably improved and it could be used for more than 50 days.

  • PDF

Identification of Functional Site of S-Modulin

  • Tachibanaki, Shuji;Nanda, Kumiko;Sasaki, Kenji;Ozaki, Koichi;Kawamura, Satoru
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.281-283
    • /
    • 2002
  • S-modulin in frog or its bovine homologue, recoverin, is a 26 kDa EF-hand $Ca^{2+}$-binding protein found in rod photoreceptors. The $Ca^{2+}$ -bound form of S-modulin binds to rhodopsin kinase (Rk) and inhibits its activity. Through this regulation, S-modulin is believed to modulate the light-sensitivity of a rod. In the present study, we tried to identify the interaction site of the $Ca^{2+}$ -bound form of S-modulin to Rk. First, we mapped roughly the interaction regions by using partial peptides of S-modulin. The result suggested that a specific region near the amino terminus is the interaction site of S- modulin. We then identified the essential amino acid residues in this region by using S-modulin mutant proteins: four amino acid residues were suggested to interact with Rk. These residues are located in a small closed pocket in the $Ca^{2+}$-free, inactive form of S-modulin, but exposed to the surface of the molecules in the $Ca^{2+}$ -bound, active form of S-modulin. Two additional amino acid residues were found to be crucial for the $Ca^{2+}$ -dependent conformational changes of S-modulin. The present study firstly identified the functional site of S-modulin, a member of a neuronal calcium sensor protein family.in family..

  • PDF