• 제목/요약/키워드: Calcium sensor

검색결과 21건 처리시간 0.021초

Diagnostic Calculation of Trace Calcium Ions in Food Using a DNA doped Sensor

  • Yang, Young-Kyun;Ly, Suw-Young
    • 한국응용과학기술학회지
    • /
    • 제30권2호
    • /
    • pp.197-203
    • /
    • 2013
  • The diagnostic assay of calcium ion was sought using a modified sensor with square-wave stripping voltammetry (SWSV) and cyclic voltammetry (CV). In this study, simple graphite pencil was used as working, reference, and auxiliary electrodes. By coating the working electrodes with DNA, their sensitivity was very much improved, and good results were yielded. Moreover, clean seawater was used as an electrolyte solution instead of acid and base electrolytes to lessen the expenses involved in the experiment. The analytical optimum conditions were also examined. These conditions were attained at the low detection limit of $0.6ugL^1$. After that, the results were applied to drinking water of milk contain.

A Highly Selective and Sensitive Calcium(II)-Selective PVC Membrane Based on Dimethyl 1-(4-Nitrobenzoyl)-8-oxo-2,8-dihydro-1H-pyrazolo[5,1-a]isoindole-2,3-dicarboxylate as a Novel Ionophore

  • Zamani, Hassan Ali;Abedini-Torghabeh, Javad;Ganjali, Mohammad Reza
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권6호
    • /
    • pp.835-840
    • /
    • 2006
  • Dimethyl 1-(4-nitrobenzoyl)-8-oxo-2,8-dihydro-1H-pyrazolo[5,1-a]isoindole-2,3-dicarboxylate has been used as an ionophore and o-nitrophenyloctyl ether as a plasticizer in order to develop a poly(vinyl chloride)-based membrane electrode for calcium ion detection. The sensors exhibit significantly enhanced response towards calcium(II) ions over the concentration range $8.0{\times}10^{-7}\;1.0{\times}10^{-1}$ M at pH 3.0-11 with a lower detection limit of $5.0 {\times}10^{-7}$ M. The sensors display Nernstian slope of 29.5 ${\pm}$ 0.5 mV per decade for Ca(II) ions. Effects of plasticizers, lipophilic salts and various foreign common ions are tested. It has a fast response time within 10 s over the entire concentration range and can be used for at least 2 months without any divergence in potentials. The proposed electrode revealed good selectivity and response for $Ca^{2+}$ over a wide variety of other metal ions. The selectivity of the sensor is comparable with those reported for other such electrodes. The proposed sensor was successfully applied as an indicator electrode for the potentiometric titration of a Ca(II) solution, with EDTA.

Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors

  • Oh, Jihae;Lee, Chiwoo;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권4호
    • /
    • pp.237-249
    • /
    • 2019
  • Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.

Effect of Surfactants on the Electrochemical Performance of Cation-Selective Membrane Electrodes

  • Oh, Hyun-Joon;Cha, Geun-Sig;Nam, Hak-hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권1호
    • /
    • pp.37-44
    • /
    • 2003
  • We examined the effect of polyether-type nonionic surfactants (Brij 35, Triton X-100, Tween 20 and Tween 80) on the potentiometric properties of sodium-, potassium- and calcium-selective membranes which are prepared with widely used ionophores and four kinds of polymer matrices [poly(vinyl chloride) (PVC), polyurethane (PU), PVC/PU blend, and silicone rubber (SR)]. It was found that the PVC-based membranes, which provide the best performance among all other matrix-based membranes in the absence of nonionic surfactants, exhibited larger change in their potentiometric properties when nonionic surfactants are added to the sample solution. On the other hand, the sodium-selective SR-based membrane with calix[4]arene, potassium-selective PVC/PU- or SR-based membrane with valinomycin, and the calcium-selective SR-based membrane with ETH 1001 provide almost identical analytical performance in the presence and absence of Tween 20 or Tween 80 surfactants. The origin of nonionic surfactants effect was also investigated by interpreting the experimental results obtained with various matrices and ionophores. The results suggest that the nonionic surfactant extracted into the membrane phase unselectively form complexes with the primary and interfering ions, resulting in increased background potential and lower binding ability for the ionophore. Such effects should result in deteriorated detection limits, reduced response slopes and lower selectivity for the primary ions.

Calmodulin 단백질의 형태변화를 이용한 광섬유 형광센서에 의한 $Ca^{2+}$의 정량 (Determination of $Ca^{2+}$ by Fiber Optic Fluorosensor Based on the Conformational Change of the Protein Calmodulin)

  • 이창섭;양승태
    • 분석과학
    • /
    • 제8권3호
    • /
    • pp.221-227
    • /
    • 1995
  • $Ca^{2+}$에 대하여 특이한 선택성을 보이는 광섬유형광센서에 대하여 연구하였다. 이 센서는 $Ca^{2+}$과 형광성 킬레이트를 형성하는 단백질 Calmodulin(CaM)을 사용하였으며, 두 갈래로 된 광섬유 다발의 끝면에 플루오르세인 이소티오시아네이트로써 형광 표지된 Calmodulin(FCaM)으로 만든 용액을 투석막 안에 넣어서 제작하였다. 이 센서의 감응 메카니즘은 FCaM이 $Ca^{2+}$과 결합하여 킬레이트를 형성할 때에 나타나는 형광 스펙트럼의 이동 현상을 바탕으로 한다. CaM은 $Ca^{2+}$과 결합할 때에 형태변화를 일으키며, 이로 인해 유발되는 FCaM의 형광세기 변화로써 농도를 결정하였다. 광전자증배관으로 형광의 세기를 측정하여 $Ca^{2+}$에 대한 검정곡선을 작성하였으며, 센서의 $Ca^{2+}$에 대한 검출한계와 $Mg^{2+}$, $Eu^{3+}$, $La^{3+}$들에 의한 방해효과, 감응 시간 및 수명을 조사하였다.

  • PDF

Synthesis of a New Hexadendates Schiff's Base and Its Application in the Fabrication of a Highly Selective Mercury(II) Sensor

  • Ganjali, M.R.;Norouzi, P.;Alizadeh, T.;Salavati-Niasari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권1호
    • /
    • pp.68-72
    • /
    • 2007
  • A new PVC membrane potentiometric sensor that is highly selective to Hg2+ ions was prepared, using bis(2-hydroxybenzophenone) butane-2,3-dihydrazone (HBBD) as an excellent hexadendates neutral carrier. The sensor works satisfactorily in the concentration range of 1.0 × 10-6 to 1.0 × 10-1 mol L-1 (detection limit 4 × 10-7 mol L-1) with a Nernstian slope of 29.7 mV per decade. This electrode showed a fast response time (~8 s) and was used for at least 12 weeks without any divergence. The sensor exhibits good Hg2+ selectivity for a broad range of common alkali, alkaline earth, transition and heavy metal ions (lithium, sodium, potassium, magnesium, calcium, copper, nickel, cobalt, zinc, cadmium, lead and lanthanum). The electrode response is pH independent in the range of 1.5-4.0. Furthermore, the developed sensor was successfully used as an indicator electrode in the potentiometric titration of mercury ions with potassium iodide and the direct determination of mercury in some binary and ternary mixtures.

수경재배용 배양액의 이온성분 분석을 위한 고체형 센서 모듈 개발 (Development of a Solid State Ion Sensor Module for Analysis of Hydroponic Nutrients)

  • 김기영;이상봉;장영창
    • Journal of Biosystems Engineering
    • /
    • 제32권5호
    • /
    • pp.348-353
    • /
    • 2007
  • A solid state ion sensor module has been developed and evaluated for hydroponic nutrients analysis. The sensor module consisted of five ion-selective electrodes (ISE) fabricated by screen-printing technology. The electrochemical responses of ion sensors for nitrate, ammonium, potassium, calcium, and pH were measured with specially designed 7-channel low voltage signal transducers. The analytical characteristics of the sensors were comparable with those of conventional ISE sensors. The solid state ion sensors exhibit linear relationships over five concentration decades. Detection limit of the sensors were $5.6{\times}10^{-5}{\sim}1.6{\times}10^{-7}M$ depends on ions. Performance test results showed that relative errors of measured ion concentrations were less than 5% for $NO_3{^-},\;K^+,\;Ca^{2+}$ ion, and pH. The concentration of $NO_3{^-},\;NH_4{^+},\;K^+,\;Ca^{2+}$, and pH ion in standard solution and nutrient solutions could be determined by direct potentiometric measurements without any conditioning before measurements.

Development of Methane Gas Sensor by Various Powder Preparation Methods

  • Min, Bong-Ki;Park, Soon-Don;Lee, Sang-Ki
    • The Korean Journal of Ceramics
    • /
    • 제5권2호
    • /
    • pp.125-130
    • /
    • 1999
  • After $SnO_2$ fine powder by precipitation method, Ca as crystallization inhibitor and Pd as catalyst were added to $SnO_2$ raw material by various methods. Thick film device was fabricated on the alumina substrate by mixing ethylene glycol and such mixed powders. The sensing characteristics of the device for methane gas were investigated. The most excellent gas sensing property was shown by the thick film device fabricated by Method 3 in which Ca and Pd doped $SnO_2$ powder is prepared by mixing $SnO_2$ powder, 0.1 wt% Ca acetate and 1 wt% $PdCl_2$ in deionized water and by calcining the mixture, after $Sn(OH)_4$ is dried at $110^{\circ}C$ for 36h. The sensitivity of the sensor fabricated with $SnO_2$-0.1 wt%Ca acetate-1wt%$PdCl_2$ powder heat-treated at $700^{\circ}C$ for 1h was about 86% for 5,000 ppm methane in air at $350^{\circ}C$ of the operating temperature. Response time and recovery were also excellent.

  • PDF

4'-Aminobenzo-15-crown-5를 수식한 새로운 $K^{+}-ISFET$의 제조와 감응특성 (Preparation of a New $K^{+}-ISFET$ Modified with 4'-Aminobenzo-15-crown-5 and Its Response Characteristics)

  • 이흥락;윤종훈;양승태;정동숙;손병기
    • 센서학회지
    • /
    • 제1권1호
    • /
    • pp.85-92
    • /
    • 1992
  • 4'-Aminobenzo-15-crown-5를 수식한 새로운 $K^{+}-ISFET$를 제조하고 그 감응특성을 조사하였다. $K^{+}-ISFET$의 pH에 대한 감응기울기는 30.0 mV/decade였으며, 감응시간은 3분 이상이었다. 또 $K^{+}-ISFET$$K^{+}$에 대한 감응기울기와 감응시간은 각각 $19.5{\pm}0.2{\;}mV/decade$와 약 3분이었다. $K^{+}$에 대한 이 센서의 직선감응범위는 $2.0{\times}10^{-4}{\sim}1.0{\times}10^{-2}M$이었다. 알칼리금속과 알칼리토금속 이온들에 대한 $K^{+}-ISFET$의 선택계수도 구하였다. 나트륨, 암모늄 및 칼슘이온 등이 비교적 크게 방해하였다. 이 센서의 장기안정도는 매우 개선되었으며, 약 50일 이상동안 사용할 수 있었다.

  • PDF

Identification of Functional Site of S-Modulin

  • Tachibanaki, Shuji;Nanda, Kumiko;Sasaki, Kenji;Ozaki, Koichi;Kawamura, Satoru
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.281-283
    • /
    • 2002
  • S-modulin in frog or its bovine homologue, recoverin, is a 26 kDa EF-hand $Ca^{2+}$-binding protein found in rod photoreceptors. The $Ca^{2+}$ -bound form of S-modulin binds to rhodopsin kinase (Rk) and inhibits its activity. Through this regulation, S-modulin is believed to modulate the light-sensitivity of a rod. In the present study, we tried to identify the interaction site of the $Ca^{2+}$ -bound form of S-modulin to Rk. First, we mapped roughly the interaction regions by using partial peptides of S-modulin. The result suggested that a specific region near the amino terminus is the interaction site of S- modulin. We then identified the essential amino acid residues in this region by using S-modulin mutant proteins: four amino acid residues were suggested to interact with Rk. These residues are located in a small closed pocket in the $Ca^{2+}$-free, inactive form of S-modulin, but exposed to the surface of the molecules in the $Ca^{2+}$ -bound, active form of S-modulin. Two additional amino acid residues were found to be crucial for the $Ca^{2+}$ -dependent conformational changes of S-modulin. The present study firstly identified the functional site of S-modulin, a member of a neuronal calcium sensor protein family.in family..

  • PDF