• Title/Summary/Keyword: Calcium phosphate dihydrate

Search Result 11, Processing Time 0.022 seconds

Reinforcement of Calcium Phosphate-Calcium Sulfate Injectable Bone Substitute Using Citric Acid and Hydroxypropyl-Methyl-Cellulose

  • Thai, Van Viet;Kim, Min-Sung;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.45.1-45.1
    • /
    • 2009
  • In this study, we investigated a calcium phosphate-calcium sulfate injectable bone substitute (IBS) with organic reinforcement of chitosan, citric acid and hydroxypropyl-methyl-cellulose (HPMC). The powder component of IBS consisted of tetra calcium phosphate (TTCP), dicalcium phosphate dihydrate (DCPD) and calcium sulfate dihydrate (CSD). The liquid component was a solution of citric acid and chitosan. The effect of HPMC in terms of setting time, compressive strength and apatite forming ability on this IBS was investigated. The mass content of HPMC in liquid phase was varied in array of 0%, 2%, 3% and 4%. The setting times obtained between 20 and 45 minutes. Compressive strength was achieved over 20 MPa after incubation at 370C and in 100% humidity for 28 days. Porosities were evaluated in relation with compressive strength. Elastic moduli of the 28 days after-incubation IBS were obtained around 4GPa

  • PDF

Wet preparation of calcium phosphates from aqueous solutions

  • Lee, Byeong Woo;Hong, Il Gok
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.655-659
    • /
    • 2019
  • Calcium phosphates such as HA (hydroxyapatite), β-TCP (tricalcium phosphate) and biphasic HA/β-TCP, were synthesized by wet chemical precipitation in aqueous solution combined with ball milling process. Nanosize powders of the calcium phosphates were synthesized using Ca(OH)2 and H3PO4. The effects of initial precursor Ca/P ratio (1.30, 1.50 and 1.67), ball milling process and post heat-treatment on the phase evolution behavior of the powders were investigated. The phase of resulting powder was controllable by adjusting the initial Ca/P ratio. HA was the only phase for as-prepared powders in both cases of Ca/P ratios of 1.50 and 1.67. The single HA phase without any noticeable second phase was obtained for the initial Ca/P ratio of 1.67 in the overall heat-treatment range. Pure β-TCP and biphasic calcium phosphate (HA/β-TCP) were synthesized from precursor solutions having Ca/P molar ratios of 1.30 and 1.50, respectively, after having been heat-treated above 700 ℃. The β-TCP phase has appeared on the pre-existing DCPD (dicalcium phosphate dihydrate) and/or HA phase. Dense ceramics having translucency were obtained at a considerably lower sintering temperature. The modified process offered a fast, convenient and economical route for the synthesis of calcium phosphates.

Formation of Hydroxyapatite in Portland Cement Paste

  • Chung, Chul-Woo;Lee, Jae-Yong;Kim, Ji-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.68-75
    • /
    • 2014
  • In order to increase the integrity of the wellbore which is used to prevent the leakage of supercritical $CO_2$, it is necessary to develop a concrete that is strongly resistant to carbonation. In an environment where the concentration of $CO_2$ is exceptionally high, $Ca^{2+}$ ion concentration in pore solution of Portland cement concrete will drop significantly due to the rapid consumption of calcium hydroxide, which decreases the stability of the calcium silicate hydrate. In this research, calcium phosphates were used to modify Portland cement system in order to produce hydroxyapatite, a hydration product that is strongly resistant to carbonation under such an environment. According to the experimental results, calcium phosphates reacted with Portland cement to form hydroxyapatite. The formation of hydroxyapatite was verified using X-ray diffraction analyses with selective extraction techniques. When using dicalcium phosphate dihydrate and tricalcium phosphate, the 28-day compressive strength was lower than that of plain cement paste. However, the specimen with monocalcium phosphate monohydrate showed equivalent strength to that of plain cement paste.

Rheological Properties of Calcium Phosphate Cement Mixed with 2 Kinds of Setting Solution (2종의 경화액과 혼합된 calcium phosphate cement의 유변학적 성질에 관한 연구)

  • Chang, Seok-Woo;Kwon, Ho-Beom;Yoo, Hyun-Mi;Park, Dong-Sung;Oh, Tae-Seok;Bae, Kwang-Shik
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.3
    • /
    • pp.311-316
    • /
    • 2008
  • Calcium phosphate cement (CPC) has been used as bone substitute successfully due to good biocompatibility and osteoconductivity. One of the important mechanical characteristics of CPC is flowablility, which can be evaluated by measuring rheological parameters. However, there have been few studies that measured rheological properties of CPC. The purpose of this study was to evaluate the rheological properties of CPC paste mixed with 2 kinds of setting solutions, 2% hydroxyprophyl methylcellulose (HPMC) and 35% polyacrylic acid (PAA). The CPC used was dicalcium phosphate dihydrate (DCPD). Rheological properties of CPC paste were measured using rheometer. The statistical analysis was carried out with Mann-whitney test with Bonferronis collection. CPC with both setting solutions showed shear thinning behavior. CPC with 2% HPMC showed signigicantly higher complex viscosity than CPC with 35% PAA(p<0.05).

A Study on the Optimum Conditions for Preparation of Calcium hydrogenphosphate Dihydrate by Box-Wilson Experimental Design (Box-Wilson 실험계획에 의한 연마용 인산일수소칼슘의 최적 제조조건 추구 및 안정화)

  • Rhee, Gye-Ju;Kwak, Son-Hyuk;Suh, Sung-Su
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.221-232
    • /
    • 1996
  • An abrasive, calcium hydrogen phosphate dihydrate (DCPD), was synthesized in a Box-wilson experimental design by reactions between phosphoric acid and milk of lime, and calcium chloride and sodium phosphate solutions, and stabilized with TSPP and TMP. The optimum conditions for preparation of DCPD from phosphoric acid with milk of lime were such as; reaction temp.; $51.9^{\circ}C$, conc. of lime; 25.9%, conc. of phosphoric acd; 77.9%, drying temp.; $60.2^{\circ}C$ and final pH; 6.46. The physico-chemical and pharmaceutical properties of DCPD were showed as follows: glycerin absorption value(68 ml/100g), whiteness(99.5%), particle size(10.9 nm), pH(7.8), and set test(pass). XRD and SEM of DCPD indicated a monoclinic system crystallographically. $N_2$ adsorption isotherm curve by BET showed non porous type II form. The micromeritic parameters of DCPD showed that surface area was $3.27{\sim}4.6\;cm^{2}/g$ and pore volume, pore area and pore radius were negligible. The rheogram of the toothpaste containing DCPD showed pseudoplastic flow with yield value of 321, and thixotropic behavior forming hysteresis loop. These results meet the requirements as abrasive standard, and sythesized DCPD is expected as a good dental abrasive such as a high quality grade in practice.

  • PDF

Assessment of Relapsing Urolithiasis from K43 with Erosive Gastritis (미란성 위염 환자 K43에서 재발성 요로 결석에 관한 연구)

  • 김재웅
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.1
    • /
    • pp.44-52
    • /
    • 1997
  • Nephrolithiasis is the most common disorder of the urinary tract in hospitalized patients, more frequently increased in 30~50 years of age, more common in males than in females, prior right stone to left side, and than upper ureteral stone is found in cultural country, while lower ureteral stone is increased in uncultural country. Stone components are classified as calcium oxalate, calcium phosphate, magnesium ammonium phosphate, uric acid, cystine, and their mixed stone, respectively. According to the pathophysiology of urinary stones, supersaturation/crystalization of inorganic salt concentration in urine, organic matrix, inhibitor deficiency, and epitaxy theory could be based on the stone formation. Not only hypercalciuria, hyperparathyroidism, hyperoxaluria, hyperuricosuria, and cystinuria, but also renal tubular acidosis, hypervitaminosis D, and peptic ulcer, are significantly associated with nephrolithiasis. In this study upper ureteral stone component were analyzed with chemical analysis, infrared spectrum, and image analyzer from K43 patient wit erosive gastritis. As the results, mixed stone of calcium oxalate dihydrate and calcium phosphate apatite was identified, the values of clinical test in blood and urine maintained normal revels. The relapsing urinary stone from K43 have no correlation between factors for stone formation reported early, also have no evidence for risk from erosive gastritis.

  • PDF

The Effect of Temperature and Concentration of Setting Solution on the Rheological Properties of Injectable Calcium Phosphate (경화액의 농도와 온도가 인산칼슘시멘트의 유변학적 성질에 미치는 영향에 관한 연구)

  • Yoo, Hyun-Mi;Chang, Seok-Woo;Park, Dong-Sung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.1
    • /
    • pp.73-82
    • /
    • 2009
  • Injectable calcium phosphate cement (CPC) has been used as bone substitute successfully due to good biocompatibility and osteoconductivity. One of the important mechanical characteristics of CPC is flowablility, which can be evaluated by measuring rheological parameters. However, there have been few studies that measured rheological properties of CPC. The purpose of this study was to evaluate the effects of temperature and concentrations of 2 kinds of setting solutions, hydroxyprophyl methylcellulose (HPMC) and polyacrylic acid (PAA), on rheological properties of CPC. The CPC used was dicalcium phosphate dihydrate (DCPD). Rheological properties of CPC paste were measured using rheometer. The effect of concentrations of each solution (2% and 1% HPMC and 35% and 17.5% PAA) was evaluated. The effect of temperature ($25^{\circ}C$ and $37^{\circ}C$) on the rheological properties of CPC was also investigated. The statistical analysis was carried out with Mann-whitney test with Bonferronis collection. CPC with both setting solutions showed shear thinning behavior. Higher concentrations of setting solution (2% HPMC and 35% PAA) produced significantly higher viscosity than lower concentrations of setting solution (1% HPMC and 17.5% PAA). CPC with HPMC showed significantly higher viscosity at $37^{\circ}C$ that at $25^{\circ}C$. CPC with PAA showed lower viscosity at $37^{\circ}C$ than at $25^{\circ}C$, although the difference was not statistically significant. The results showed that CPC with HPMC or PAA solutions are pseudoplastic and the concentrations of setting solutions and temperature may have an effect on the rheological properties of CPC paste. These results showed that the flowability of injectable CPC could be improved by use of increasing frequency of oscillation. In clinical practice, the use of ultrasonic vibration would be helpful in application of injectable CPC. CPC with HPMC could be more easily applicated at $25^{\circ}C$ than $37^{\circ}C$. The use of lower concentrations of HPMC and PAA solution would be beneficial in terms of flowability.

Formation of Bioactive Ceramic Foams by Polymer Pyrolysis and Self-Blowing (고분자 열분해와 자가발포를 이용한 생체활성 다공체의 제조)

  • Kwak, Dae-Hyun;Kim, Jin-Ho;Lee, Eun-Ju;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.412-417
    • /
    • 2011
  • Formation and characterization of hydroxyapatite-based porous ceramics derived from polymer pyroysis were investigated. Polymer based process is chosen for preparing porous hydroxyapatite-based ceramics having a high mechanical strength. The hydroxyapatite-based porous ceramic was prepared by a self-blowing process of a polymethylsiloxane with filler and pyrolyzed at above $1000^{\circ}C$. Biphasic material consisted of hydroxyapatite and CaO has been prepared by solid state reaction from calcium hydroxide($Ca(OH)_2$) and calcium hydrogen phosphate dihydrate($CaHPO_4{\cdot}2H_2O$) as a filler material. The influence of filler content on mechanical properties was evaluated. The change of crystalline phase, microstructure and mechanical properties were investigated and discussed.

Synthesis parameters of hydroxyapatite preparation by a precipitation process (합성조건이 침전법에 의한 Hydroxyapatite 제조에 미치는 영향)

  • Moon, Sung Wook;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.3
    • /
    • pp.96-102
    • /
    • 2022
  • Hydroxyapatite (HAp) was synthesized from calcium hydroxide (Ca(OH)2) reacting with phosphoric acid (H3PO4) in aqueous solution. HAp powders were synthesized from extremely high concentration of precursor solutions over 3 M of Ca(OH)2 aqueous suspension using modified process parameters such as phosphoric acid (H3PO4) pouring rate, aging time and post ball milling process. Regardless of phosphoric acid pouring rate, the DCPD (dicalcium phosphate dihydrate) was formed at room temperature and when heated above 700℃, β-TCP (tricalcium phosphate) was synthesized and the amount reached its maximum at 900℃. When the synthesized powder was sintered at 1150℃, β-TCP, a high temperature impurity phase, remained. The single HAp phase without DCPD was obtained from post ball-milled precipitates followed by 3 day aging. For the ball-milled precipitates even without the aging process, the desired single HAp phase without β-TCP could be obtained by heat treatment above 500℃. The post ball milling process provided a convenient route for HAp synthesis.

Studies on Calcium Availability in Various Sources by Chicken (닭에 대(對)한 칼슘 공급원별(供給源別) 효율(?率)에 관(關)한 연구(硏究))

  • Chiang, Yun-Hwan
    • Applied Biological Chemistry
    • /
    • v.18 no.3
    • /
    • pp.145-166
    • /
    • 1975
  • The calcium balance study was carried out to determine the availability of calcium in different sources for chicks and laying hens. The sources of calcium were calcium carbonate (CC), dicalcium phosphate-dihydrate (DCPH), and dicalcium phosphate-anhydride (DCPA) for chicks and calcium carbonate (CC) and oyster shell (OS) for laying hens. The radioisotope dilution method was employed to measure the endogenous excreta calcium during the period of balance study following preliminary feeding. A. Experimental results with chicks: No significant difference was found among feed consumption of chicks fed diets containing different sources of calcium. Body weight gain of chicks was dependent upon the source of calcium. The gain decreased in the order of DCPH, DCPA and CC (P<0.01). The feed conversion efficiency in chicks fed DCPH was better than those in chicks fed CC or DCPA. The average tibia ash contents for chicks fed different sources of calcium were similar. The DCPH was superior to CC or DCPA regarding the calcium content in tibia ash. There were no significant differences among the average calcium contents in plasma trichloracetic acid filtrate in chicks irrespective of calcium sources. The mean apparent retention of calcium by chicks fed DCPH, CC and DCPA were 65.9, 64.0 and 59.9% respectively. The calcium to phosphorus ratios in tibia ash and plasma trichloracetic acid filtrate for chicks fed different sources of calcium were similar. The chicks fed DCPH showed the partition of endogenous excreta calcium in total excreta calcium as 35.6% which was higher than 31.0 or 31.4% for chicks fed CC or DCPA. The endogenous excreta calcium per day per chick in group fed DCPH, DCPA or CC were 17.2, 16.1 and 14.6mg respectively. The true retained calcium per day per chick in group fed DCPH were 109.9 mg which was higher than those observed with CC or DCPA group (P<0.01). The true retention of calcium by the birds fed diets containing DCPH, CC or DCPA were 78.1, 75.1 or 72.6% respectively. B. Experimental results with laying hens: The feed consumption, egg production and feed converion efficiency of laying hens fed diets containing different sources of calcium were similar. Calcium concentration in plasma trichloracetic acid filtrate in laying birds fed CC was equivalent to the value obtained by feeding OS. The apparent calcium retention by laying birds fed CC was 61.6% and it was significantly more than that of hens fed OS of 51.6% (P<0.05). The partition of endogenous excreta calcium in total excreta calcium of laying hens fed CC was 23.5% and this was higher than that of birds fed OS of 15.6%. The laying hens fed CC showed 310 mg of endogenous excreta calcium per day per bird while birds fed OS showed 261mg. The true retention of calcium by layers fed CC was 70.7% against 59.2% for birds fed OS (P<0.05).

  • PDF