• Title/Summary/Keyword: Calcium imaging

Search Result 100, Processing Time 0.024 seconds

Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors

  • Oh, Jihae;Lee, Chiwoo;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.4
    • /
    • pp.237-249
    • /
    • 2019
  • Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.

Coronary Artery Calcium Data and Reporting System (CAC-DRS): A Primer

  • Parveen Kumar;Mona Bhatia
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.1
    • /
    • pp.1-17
    • /
    • 2023
  • The Coronary Artery Calcium Data and Reporting System (CAC-DRS) is a standardized reporting method for calcium scoring on computed tomography. CAC-DRS is applied on a per-patient basis and represents the total calcium score with the number of vessels involved. There are 4 risk categories ranging from CAC-DRS 0 to CAC-DRS 3. CAC-DRS also provides risk prediction and treatment recommendations for each category. The main strengths of CAC-DRS include a detailed and meaningful representation of CAC, improved communication between physicians, risk stratification, appropriate treatment recommendations, and uniform data collection, which provides a framework for education and research. The major limitations of CAC-DRS include a few missing components, an overly simple visual approach without any standard reference, and treatment recommendations lacking a basis in clinical trials. This consistent yet straightforward method has the potential to systemize CAC scoring in both gated and non-gated scans.

Fully Automatic Coronary Calcium Score Software Empowered by Artificial Intelligence Technology: Validation Study Using Three CT Cohorts

  • June-Goo Lee;HeeSoo Kim;Heejun Kang;Hyun Jung Koo;Joon-Won Kang;Young-Hak Kim;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1764-1776
    • /
    • 2021
  • Objective: This study aimed to validate a deep learning-based fully automatic calcium scoring (coronary artery calcium [CAC]_auto) system using previously published cardiac computed tomography (CT) cohort data with the manually segmented coronary calcium scoring (CAC_hand) system as the reference standard. Materials and Methods: We developed the CAC_auto system using 100 co-registered, non-enhanced and contrast-enhanced CT scans. For the validation of the CAC_auto system, three previously published CT cohorts (n = 2985) were chosen to represent different clinical scenarios (i.e., 2647 asymptomatic, 220 symptomatic, 118 valve disease) and four CT models. The performance of the CAC_auto system in detecting coronary calcium was determined. The reliability of the system in measuring the Agatston score as compared with CAC_hand was also evaluated per vessel and per patient using intraclass correlation coefficients (ICCs) and Bland-Altman analysis. The agreement between CAC_auto and CAC_hand based on the cardiovascular risk stratification categories (Agatston score: 0, 1-10, 11-100, 101-400, > 400) was evaluated. Results: In 2985 patients, 6218 coronary calcium lesions were identified using CAC_hand. The per-lesion sensitivity and false-positive rate of the CAC_auto system in detecting coronary calcium were 93.3% (5800 of 6218) and 0.11 false-positive lesions per patient, respectively. The CAC_auto system, in measuring the Agatston score, yielded ICCs of 0.99 for all the vessels (left main 0.91, left anterior descending 0.99, left circumflex 0.96, right coronary 0.99). The limits of agreement between CAC_auto and CAC_hand were 1.6 ± 52.2. The linearly weighted kappa value for the Agatston score categorization was 0.94. The main causes of false-positive results were image noise (29.1%, 97/333 lesions), aortic wall calcification (25.5%, 85/333 lesions), and pericardial calcification (24.3%, 81/333 lesions). Conclusion: The atlas-based CAC_auto empowered by deep learning provided accurate calcium score measurement as compared with manual method and risk category classification, which could potentially streamline CAC imaging workflows.

Glucosylsphingosine Activates Serotonin Receptor 2a and 2b: Implication of a Novel Itch Signaling Pathway

  • Afzal, Ramsha;Shim, Won-Sik
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.497-503
    • /
    • 2017
  • Recent reports claimed that glucosylsphingosine (GS) is highly accumulated and specifically evoking itch-scratch responses in the skins of atopic dermatitis (AD) patients. However, it was unclear how GS can trigger itch-scratch responses, since there were no known molecular singling pathways revealed yet. In the present study, it was verified for the first time that GS can activate mouse serotonin receptor 2a (mHtr2a) and 2b (mHtr2b), but not 2c (mHtr2c) that are expressed in HEK293T cells. Specifically, effects of GS on all mouse serotonin receptor 2 subfamily were evaluated by calcium imaging techniques. The GS-induced intracellular calcium increase was dose-dependent, and antagonists such as ketanserin (Htr2a antagonist) and RS-127445 (Htr2b antagonist) significantly blocked the GS-induced responses. Moreover, the proposed GS-induced responses appear to be mediated by phospholipase C (PLC), since pretreatment of a PLC inhibitor U-73122 abolished the GS-induced responses. Additionally, the GS-induced calcium influx is probably mediated by endogenous TRPC ion channels in HEK293T cells, since pretreatment of SKF-96365, an inhibitor for TRPC, significantly suppressed GS-induced response. In conclusion, the present study revealed for the first time that GS can stimulate mHtr2a and mHtr2b to induce calcium influx, by utilizing PLC-dependent pathway afterwards. Considering that GS is regarded as a pruritogen in AD, the present study implicates a novel GS-induced itch signaling pathway.

Calcium Pyrophosphate Dihydrate Crystal Deposition Disease Involving the Ligamentum Flavum of the Cervical Spine with Intense Enhancement on MRI: A Case Report (자기공명영상에서 뚜렷한 조영증강을 보이는 경추 황색인대의 칼슘수산화인회석 결정침착질환: 증례 보고)

  • Junyoung Lee;Seunghun Lee;Jiyoon Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.5
    • /
    • pp.1234-1238
    • /
    • 2020
  • Calcium pyrophosphate dihydrate (CPPD) crystal deposition disease is characterized by chondrocalcinosis, which mainly affects the knees, wrists, pelvis, and rarely, the spine. According to previous reports, CPPD crystal deposits display heterogeneous enhancement on MRI. When combined with inflammation of the surrounding soft tissue, strong enhancement by CPPD crystal deposition may appear similar to imaging features of other conditions such as infectious spondylitis. In these conditions, CT plays an important role in differential diagnosis. Here, we present a case of CPPD crystal deposition disease in the ligamentum flavum of the cervical spine that showed intense enhancement on MRI.

Application of Artificial Intelligence to Cardiovascular Computed Tomography

  • Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.10
    • /
    • pp.1597-1608
    • /
    • 2021
  • Cardiovascular computed tomography (CT) is among the most active fields with ongoing technical innovation related to image acquisition and analysis. Artificial intelligence can be incorporated into various clinical applications of cardiovascular CT, including imaging of the heart valves and coronary arteries, as well as imaging to evaluate myocardial function and congenital heart disease. This review summarizes the latest research on the application of deep learning to cardiovascular CT. The areas covered range from image quality improvement to automatic analysis of CT images, including methods such as calcium scoring, image segmentation, and coronary artery evaluation.

A Modified Length-Based Grading Method for Assessing Coronary Artery Calcium Severity on Non-Electrocardiogram-Gated Chest Computed Tomography: A Multiple-Observer Study

  • Suh Young Kim;Young Joo Suh;Na Young Kim;Suji Lee;Kyungsun Nam;Jeongyun Kim;Hwan Kim;Hyunji Lee;Kyunghwa Han;Hwan Seok Yong
    • Korean Journal of Radiology
    • /
    • v.24 no.4
    • /
    • pp.284-293
    • /
    • 2023
  • Objective: To validate a simplified ordinal scoring method, referred to as modified length-based grading, for assessing coronary artery calcium (CAC) severity on non-electrocardiogram (ECG)-gated chest computed tomography (CT). Materials and Methods: This retrospective study enrolled 120 patients (mean age ± standard deviation [SD], 63.1 ± 14.5 years; male, 64) who underwent both non-ECG-gated chest CT and ECG-gated cardiac CT between January 2011 and December 2021. Six radiologists independently assessed CAC severity on chest CT using two scoring methods (visual assessment and modified length-based grading) and categorized the results as none, mild, moderate, or severe. The CAC category on cardiac CT assessed using the Agatston score was used as the reference standard. Agreement among the six observers for CAC category classification was assessed using Fleiss kappa statistics. Agreement between CAC categories on chest CT obtained using either method and the Agatston score categories on cardiac CT was assessed using Cohen's kappa. The time taken to evaluate CAC grading was compared between the observers and two grading methods. Results: For differentiation of the four CAC categories, interobserver agreement was moderate for visual assessment (Fleiss kappa, 0.553 [95% confidence interval {CI}: 0.496-0.610]) and good for modified length-based grading (Fleiss kappa, 0.695 [95% CI: 0.636-0.754]). The modified length-based grading demonstrated better agreement with the reference standard categorization with cardiac CT than visual assessment (Cohen's kappa, 0.565 [95% CI: 0.511-0.619 for visual assessment vs. 0.695 [95% CI: 0.638-0.752] for modified length-based grading). The overall time for evaluating CAC grading was slightly shorter in visual assessment (mean ± SD, 41.8 ± 38.9 s) than in modified length-based grading (43.5 ± 33.2 s) (P < 0.001). Conclusion: The modified length-based grading worked well for evaluating CAC on non-ECG-gated chest CT with better interobserver agreement and agreement with cardiac CT than visual assessment.

Effects of NaOCl on Neuronal Excitability and Intracellular Calcium Concentration in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae In;Park, A-Reum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.38 no.1
    • /
    • pp.5-12
    • /
    • 2013
  • Recent studies indicate that reactive oxygen species (ROS) can act as modulators of neuronal activity, and are critically involved in persistent pain primarily through spinal mechanisms. In this study, we investigated the effects of NaOCl, a ROS donor, on neuronal excitability and the intracellular calcium concentration ($[Ca^{2+}]_i$) in spinal substantia gelatinosa (SG) neurons. In current clamp conditions, the application of NaOCl caused a membrane depolarization, which was inhibited by pretreatment with phenyl-N-tert-buthylnitrone (PBN), a ROS scavenger. The NaOCl-induced depolarization was not blocked however by pretreatment with dithiothreitol, a sulfhydryl-reducing agent. Confocal scanning laser microscopy was used to confirm whether NaOCl increases the intracellular ROS level. ROS-induced fluorescence intensity was found to be increased during perfusion of NaOCl after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF$-DA). NaOCl-induced depolarization was not blocked by pretreatment with external $Ca^{2+}$ free solution or by the addition of nifedifine. However, when slices were pretreated with the $Ca^{2+}$ ATPase inhibitor thapsigargin, NaOCl failed to induce membrane depolarization. In a calcium imaging technique using the $Ca^{2+}$-sensitive fluorescence dye fura-2, the $[Ca^{2+}]_i$ was found to be increased by NaOCl. These results indicate that NaOCl activates the excitability of SG neurons via the modulation of the intracellular calcium concentration, and suggest that ROS induces nociception through a central sensitization.